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Abstract 

This document presents advanced spectral estimation methods for radar imaging and 

target feature extraction. In the document we study problems involved in inverse synthetic 

aperture radar (ISAR) autofocus and imaging, synthetic aperture radar (SAR) autofocus and 

motion compensation, superresolution SAR image formation, three-dimensional (3-D) target 

feature extraction via curvilinear SAR (CLSAR), and high resolution time delay estimation. 

For the ISAR autofocus and imaging problems, we study both parametric and non- 

parametric methods. For the parametric method, we present a robust autofocus algorithm, 

referred to as AUTOCLEAN (AUTOfocus via CLEAN), for ISAR imaging. It is a paramet- 

ric approach based on a very flexible data model that takes into account arbitrary transla- 

tional and planar rotational motion. For the non-parametric methods, we study the general 

forward-backward MAtch-FIlterband (MAFI) spectral estimation approaches including the 

widely-used Capon as well as the more recently introduced APES (Amplitude and Phase 

Estimation) methods. We present an adaptive Capon spectral estimation algorithm and 

apply it to the complex ISAR image formation of maneuvering targets. We also present a 

recursive APES algorithm for time-varying spectral analysis and use it for ISAR imaging as 

well as feature extraction of targets with complex maneuvering motion. 

For the problems of SAR autofocus and motion compensation, and superresolution SAR 

image formation, we study both semi-parametric and parametric methods. For the semi- 

parametric method, we present a SPAR (Semi-PARametric) algorithm based on a flexi- 

ble data model for target feature extraction and superresolution complex image formation 

for SAR. SPAR exhibits better estimation resolution performance over non-parametric ap- 

proaches and is more robust against data model errors than parametric ones. For the para- 

metric methods, we propose a MCRELAX (Motion Compensation RELAX) algorithm and 

a MCCLEAN (Motion Compensation CLEAN) algorithm for simultaneous target feature 

extraction and cross-range phase error compensation in SAR imaging. Both MCRELAX 

and MCCLEAN assume a two-dimensional (2-D) sinusoidal model for the target signal but 

assume nothing (arbitrary unknown) for.the phase error distribution, and are thus robust 



algorithms against high-order phase errors. Compared to MCRELAX, MCCLEAN has bet- 

ter convergence property and is computationally much more efficient when used in the SAR 

imaging of a large scene. 

For the 3-D target feature extraction problem, we study using CLSAR to extract target 

features. An AUTOfocus algorithm based on the RELAXation-based optimization approach 

(AUTORELAX) is proposed to compensate the aperture errors in CLSAR and to extract 

3-D target features. 

For the time delay estimation problem, we first present a Weighted Fourier transform and 

RELAXation-based (WRELAX) approach for the time delay estimation of either complex- 

or real-valued signals. WRELAX is then extended to deal with the real-valued signals with 

highly oscillatory correlation functions. Further, by using MODE (Method Of Direction 

Estimation) together with our efficient WRELAX algorithm, a novel MODE-WRELAX al- 

gorithm is proposed for the time delay estimation of either complex- or real-valued signals 

including those with highly oscillatory correlation functions to achieve superresolution. 
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1.    Introduction 

This document presents advanced spectral estimation methods for radar imaging and 

target feature extraction. In the document we study problems involved in inverse synthetic 

aperture radar (ISAR) autofocus and imaging, synthetic aperture radar (SAR) autofocus and 

motion compensation, superresolution SAR image formation, three-dimensional (3-D) target 

feature extraction via curvilinear SAR (CLSAR), and high resolution time delay estimation. 

For the ISAR autofocus and imaging problems, we study both parametric and non- 

parametric methods. For the parametric method, we present a robust autofocus algorithm, 

referred to as AUTOCLEAN (AUTOfocus via CLEAN), for ISAR imaging. It is a paramet- 

ric approach based on a very flexible data model that takes into account arbitrary transla- 

tional and planar rotational motion. For the non-parametric methods, we study the general 

forward-backward MAtch-FIlterband (MAFI) spectral estimation approaches including the 

widely-used Capon as well as the more recently introduced APES (Amplitude and Phase 

Estimation) methods. We present an adaptive Capon spectral estimation algorithm and 

apply it to the complex ISAR image formation of maneuvering targets. We also present a 

recursive APES algorithm for time-varying spectral analysis and use it for ISAR imaging as 

well as feature extraction of targets with complex maneuvering motion. 

For the problems of SAR autofocus and motion compensation, and superresolution SAR 

image formation, we study both semi-parametric and parametric methods. For the semi- 

parametric method, we present a SPAR (Semi-PARametric) algorithm based on a flexi- 

ble data model for target feature extraction and superresolution complex image formation 

for SAR. SPAR exhibits better estimation resolution performance over non-parametric ap- 

proaches and is more robust against data model errors than parametric ones. For the para- 

metric methods, we propose a MCRELAX (Motion Compensation RELAX) algorithm and 

a MCCLEAN (Motion Compensation CLEAN) algorithm for simultaneous target feature 

extraction and cross-range phase error compensation in SAR imaging. Both MCRELAX 

and MCCLEAN assume a two-dimensional (2-D) sinusoidal model for the target signal but 

assume nothing (arbitrary unknown) for the phase error distribution, and are thus robust 



algorithms against high-order phase errors. Compared to MCRELAX, MCCLEAN has bet- 

ter convergence property and is computationally much more efficient when used in the SAR 

imaging of a large scene. 

For the 3-D target feature extraction problem, we study using CLSAR to extract target 

features. An AUTOfocus algorithm based on the RELAXation-based optimization approach 

(AUTORELAX) is proposed to compensate the aperture errors in CLSAR and to extract 

3-D target features. 

For the time delay estimation problem, we first present a Weighted Fourier transform and 

RELAXation-based (WRELAX) approach for the time delay estimation of either complex- 

or real-valued signals. WRELAX is then extended to deal with the real-valued signals with 

highly oscillatory correlation functions. Further, by using MODE (Method Of Direction 

Estimation) together with our efficient WRELAX algorithm, a novel MODE-WRELAX al- 

gorithm is proposed for the time delay estimation of either complex- or real-valued signals 

including those with highly oscillatory correlation functions to achieve superresolution. 

This document contains 13 chapters. In Chapters 2-4, we study ISAR autofocus and 

imaging methods. In Chapters 5-8, we present methods for SAR autofocus and motion 

compensation, and superresolution SAR image formation. In Chapters 9-10, we study 3-D 

target feature extraction via CLSAR. The high resolution time delay estimation methods 

are presented in Chapters 11-13. 

In Chapter 2, we present the AUTOCLEAN algorithm for the motion compensation of 

ISAR imaging of moving targets. It is a parametric algorithm based on a very flexible data 

model which takes into account arbitrary range migration and arbitrary phase errors across 

the synthetic aperture that may be induced by unwanted radial motion of the target as well 

as propagation or system instability. The autofocusing is accomplished by minimizing a non- 

linear least squares (NLS) fitting criterion by using an efficient relaxation-based optimization 

approach. Compared to other existing algorithms, our method is more robust since it does 

not rely on the existence of isolated prominent point scatterers for each range profile nor on 

the precise modeling of the motion trajectory of the moving targets of interest. Significant 

improvement on the image quality is observed with the NATO raw data. 



In Chapter 3, we present an adaptive Capon spectral estimation algorithm for the com- 

plex IS AR image formation of maneuvering targets. It has better resolution and lower 

sidelobes than the short-time Fourier transform (STFT) method. The algorithm is an effi- 

cient recursive implementation of the 2-D Capon complex spectral estimator, which involves 

only fast Fourier transform (FFT) and simple matrix operations. ISAR imaging examples 

of maneuvering targets are provided to illustrate the performance of the proposed method. 

In Chapter 4, we apply the APES algorithm to sliding short-time data sequences with 

maximal overlapping for the time-varying complex spectral analysis. A computationally 

efficient recursive APES algorithm is developed, which involves only FFT and simple matrix 

operations. It exhibits much better resolution than STFT. ISAR imaging examples show that 

it can successfully circumvent the image blurring problem caused by target maneuvering. 

In Chapter 5, we first establish a flexible data model, which models each target scatterer 

as a 2-D complex sinusoid with arbitrary amplitude and constant phase in cross-range and 

with constant amplitude and phase in range, and then present the SPAR algorithm for SAR 

target feature extraction and superresolution image formation based on the established data 

model. By taking advantage of both parametric and non-parametric spectral estimation 

methods, SPAR exhibits better estimation and resolution performance over non-parametric 

approaches and is more robust against data modeling errors than parametric methods. Both 

numerical and experimental results demonstrate the performance of the proposed SPAR 

algorithm. 

In Chapter 6, we study the problem of extracting target features via SAR in the presence 

of uncompensated aperture motion errors. A parametric data model for a spotlight-mode 

SAR system is established. The Cramer-Rao bounds (CRBs) for the parameters of the data 

model are also derived. The CRB analysis shows that the unknown motion errors can sig- 

nificantly affect the accuracy of a common shift of the scatterer position in the cross-range 

direction, but have little effect on other target parameters including the accuracy of the rela- 

tive positions in range and cross-range direction. A relaxation-based MCRELAX algorithm 

for estimating both target features and motion errors is devised. Simulation results show 

that the mean-squared errors of the parameter estimates obtained by using the MCRELAX 

WJM 



algorithm can approach the corresponding CRBs. We also show that MCRELAX can simply 

be used for motion compensation only and can give better performance than the well-known 

Phase-Gradient Autofocus (PGA) algorithm. 

In Chapter 7, We present the MCCLEAN algorithm for correcting synthetic aperture 

phase errors in SAR. It is a parametric algorithm based on the same data model as used 

in MCRELAX. The computational core of the algorithm is the CLEAN algorithm, which 

involves only a sequence of 2-D FFT operations. MCCLEAN is robust against high-order 

phase errors. Compared to MCRELAX, MCCLEAN has better convergence property (no 

separate initialization step is required) and is computationally much more efficient when used 

as an independent autofocus approach for the SAR imaging of a large scene. For certain 

kinds of scene content and phase error distributions, MCCLEAN performs better than the 

PGA algorithm. We also present a modified relaxation-based algorithm, which has a simi- 

lar structure as MCCLEAN, for simultaneous autofocus and superresolution target feature 

extraction of a small scene or small region of interest (ROI) in a large scene. Experimen- 

tal examples with a portion of the data collected by the ERIM's DCS interferometric SAR 

(IFSAR) system show that the proposed algorithms are very effective. 

In Chapter 8, we consider superresolution SAR image formation via sophisticated para- 

metric spectral estimation algorithms. Parametric spectral estimation methods are devised 

based on parametric data models and are used to estimate the model parameters. We use 

the parameter estimates obtained with the parametric methods to simulate data matrices 

of large dimensions and then use the FFT methods on them to generate SAR images with 

superresolution. Experimental examples using the MSTAR and ERIM data illustrate that 

the robust spectral estimation algorithms can generate SAR images of higher resolution than 

the conventional FFT methods and enhance the dominant target features. 

In Chapter 9, we consider using CLSAR for 3-D feature extraction of small targets 

consisting of a small number of distinct point scatterers. CLSAR does not suffer from the 

ambiguities suffered by IFSAR. Since CLSAR is a relatively new technology, a self-contained 

detailed derivation of the data model is presented. The CRBs of the parameter estimates 

are also derived. We also describe how the RELAX algorithm can be used for 3-D target 



feature extraction with CLSAR for different curvilinear apertures. 

In Chapter 10, we present the AUTORELAX algorithm, which can be used to compensate 

for the aperture errors in CLSAR and to extract 3-D target features. A self-contained 

detailed derivation of the data model for the autofocus problem in CLSAR is presented. 

Experimental and simulation results show that AUTORELAX can be used to significantly 

improve the estimation accuracy of the target parameters. 

In Chapter 11, we present the WRELAX algorithm for the time delay estimation prob- 

lem. The method is a relaxation-based global minimizer of a complicated NLS criterion. 

WRELAX involves only a sequence of weighted Fourier transforms and hence the superior 

estimation performance of the NLS fitting approach is achieved at a much lower implemen- 

tation cost. The new algorithm is successfully applied to detecting and classifying roadway 

subsurface anomalies by using an ultra wideband ground penetrating radar. It is also ex- 

tended to the case of multiple looks for different scenarios {i.e., fixed delays but arbitrary 

gains and fixed delays and gains). CRB analysis and numerical and experimental examples 

are provided to demonstrate the performance of the new algorithm. 

In Chapter 12, we propose two approaches based on WRELAX to deal with the prob- 

lem of optimizing highly oscillatory cost functions. One approach (referred to as Hybrid- 

WRELAX) uses the last step of the WRELAX algorithm to minimize the true NLS cost 

function corresponding to the real-valued signal amplitudes. The other one (referred to as 

EXIP-WRELAX) uses the extended invariance principle (EXIP). They are relaxation-based 

global minimizers of a highly oscillatory NLS cost function. Both of the algorithms are shown 

to approach the CRB and require only a sequence of weighted Fourier transforms. 

In Chapter 13, we study estimating time delays and amplitudes (real- or complex-valued) 

from the superposition of very closely spaced signals with known shapes. Particularly, 

we modify the well-known high resolution MODE algorithm and use it with our efficient 

WRELAX algorithm to deal with superresolution time delay estimation. The proposed new 

method is referred to as MODE-WRELAX. MODE-WRELAX provides better accuracy than 

MODE and higher resolution than WRELAX. Moreover, it can be used for both complex- 

and real-valued signals including those with highly oscillatory correlation functions.   Nu- 



merical results show that the MODE-WRELAX estimates can approach the corresponding 

CRB. Efficient implementation of the algorithm is discussed as well. 

Each of the aforementioned chapters is self-contained with its own introduction, for- 

mulation of the problem of interest, detailed presentation of approaches, conclusions, and 

references. 

Those who have contributed to this report include Mr. Zhaoqiang Bi, Dr. Victor C. 

Chen, Dr. Kenneth Knaell, Mr. Hongbin Li, Dr. Jian Li, Dr. Zheng-She Liu, Dr. Petre 

Stoica, Dr. Renbiao Wu, and Mr. Edmund G. Zelnio. 



2.     A Robust Autofocus Algorithm for ISAR Imaging of Moving Targets 

2.1    Introduction 

ISAR (inverse synthetic aperture radar) imaging [1] of moving targets is very important 

for many military and civilian applications including ATR (automatic target recognition) 

of non-cooperative aircrafts [2, 3, 4, 5, 6], battlefield awareness [7], development as well as 

maintenance of low observable aircrafts [8] and target characterization [9, 10, 11], Moon and 

planet imaging in radio astronomy [12], and the surveillance of ground traffic on airports [13, 

14]. Compared to the conventional low-resolution wide area surveillance radar, ISARs offer 

improved detection and tracking performance and exclusive target identification capability, 

which is desirable for a modern radar. Because of this, many countries in the world are now 

trying to shift this technology from laboratory to practice. 

The principles underlying ISAR and SAR (synthetic aperture radar) can be unified 

within the framework of turntable imaging [12]. Today, the SAR technology, producing 

high-resolution maps and images of stationary targets in real-time, is a well established 

technology and nearly 30 spaceborne and airborne SAR systems are currently in operation 

for a wide range of military and civilian applications and more are being built around the 

world [15]. On the other hand, ISAR imaging is still at the R&D (Research and Devel- 

opment) stage and only a few experimental systems have been built [8, 9, 10, 16]. The 

reason to such an inbalanced development is that the relative motion between the radar and 

the target is cooperative in SAR and hence is easier to be compensated out than the non- 

cooperative relative motion in ISAR. In SAR imaging of stationary targets, the navigation 

data available on the moving platform carrying the radar can be exploited to determine a 

preliminary estimation of the motion parameters. Many sophisticated motion compensation 

algorithms have been proposed for SAR imaging and it appears that the remaining problem 

is how to make a better tradeoff between the image quality and the computational cost. 

However, the motion compensation in ISAR imaging is much more complicated than in the 

case of SAR imaging of stationary targets since the radar tracking data cannot achieve the 



accuracy required to generate a recognizable image and the motion parameters can only be 

obtained via data-based autofocus algorithms. How to devise robust and efficient autofocus 

algorithms has become the major problem in ISAR imaging since once focused, the ISAR 

images could be formed by using the well-established SAR imaging technology. 

Unlike in SAR, the radar used for ground-to-air ISAR imaging is usually stationary. The 

relative motion needed to obtain the synthetic aperture is induced by the moving target 

itself. Usually, the target motion with respect to the radar line of sight (RLOS) can be 

decomposed into a radial motion of an arbitrary reference point on the target and a tangential 

motion about the reference point l. The tangential motion can be used to form a synthetic 

aperture to provide the needed high resolution in cross-range, whereas the radial motion 

must be compensated out since it has nothing to do with ISAR imaging but can cause range 

migration and phase errors across the synthetic aperture. Successful compensation of the 

unwanted radial motion is crucial to ISAR imaging. 

The diagram of conventional Range-Doppler (R-D) ISAR image processing is shown in 

Figure 2.1. The phase history data (dechirped or demodulated step-frequency signal) re- 

ceived by the radar receiver is first range compressed. Next, radial motion is compensated 

out via rough range alignment followed by fine cross-range phase correction. Finally, Fourier 

transform or other super resolution spectral analysis methods [18, 19, 20] can be used to 

generate the ISAR images of targets of interest. In the literature, algorithms for range align- 

ment are fairly standard. It can be done either by envelope cross-correlation or tracking 

the time history of a reference point (such as the peak or the centroid) in the range com- 

pressed data and fitting it to a polynomial [1]. However, the requirement for cross-range 

phase tracking is much more stringent than that for range alignment and the range errors 

xFor arbitrarily maneuvering targets with rigid bodies, the motion can be decomposed into 
translational motion of a reference point on the target and rotational motion (yaw, pitch, 
roll) with respect to that reference point [17]. In this chapter, we assume that the non- 
planar motion can be ignored. This assumption is valid in most cases and is widely used 
in the literature. Under this assumption, the target motion can be decomposed into radial 
and tangential components. Herein tangential motion refers to the equivalent rotation 
caused by the translational motion of the reference point as well as the target self rotation 
with respect to the reference point. 



must be controlled to within a small fraction of a radar wavelength. For example, for radar 

working at X band with a wavelength of 3 centimeters, a range change of 3 millimeters would 

produce a phase error of 72°. Because of this, much efforts have been put on the cross-range 

phase estimation and many algorithms have been proposed. Most of the existing algorithms 

obtain the cross-range phase errors via tracking the phase history of a single well-isolated 

dominant scatterer on the target [1, 21, 22] (referred to as Dominant Scatterer Algorithm 

(DSA) or Prominent Point Processing (PPP)), a synthesized scatterer such as the centroid 

of multiple scatterers [23, 24, 25, 26] (referred to as Multiple Scatterer Algorithm (MSA)), 

the statistic scattering centroid (SSC) [27], or the Doppler centroid [28, 29]. DSAs [1, 21, 22] 

perform very well when there is an isolated dominant scatterer on the target. However, this 

requirement cannot be satisfied in most cases due to target scintillation and shadowing effect. 

Centroid-based algorithms [23, 24, 25, 26, 27, 28, 29] can relax this requirement in some way 

and hence are more robust than DSAs. However, phase averaging is needed by most of these 

algorithms. Without correct phase unwrapping (which is not an easy task), the averaging 

procedure will do more harm than good. The well-known SAR autofocus algorithm, referred 

to as the PGA (phase gradient autofocus) algorithm [30, 31], can also be used for the cross- 

range phase compensation in ISAR imaging. However, we have found that its performance 

depends on the quality of range alignment and on the choice of the threshold needed by the 

automatic windowing step or the size reduction rate needed by the progressive windowing 

scheme. Several variations of DSAs [32, 33] have also been proposed for cross-range phase 

error estimation, which use low-order polynomials (usually quadratic) to model the phase 

errors and then obtain the polynomial coefficients by optimizing the maximum likelihood 

(ML) cost functions. All of the aforementioned methods attempt to achieve the range align- 

ment and phase correction in separate steps and the range alignment quality may have a 

significant impact on the phase estimation algorithms and the final image quality. Moreover, 

many of the above algorithms are implicitly based on the assumption of the availability of 

well-isolated dominant scatterers and hence cannot work effectively in most practical cases. 

In addition to the above separate processing approaches, parametric motion estimation 

algorithms for joint range alignment and cross-range phase tracking have also been proposed 

9 



in the literature [34]. In [34], low-order polynomials are used to model the phase variations 

due to target motions in the phase history domain and then the polynomial coefficients are 

obtained via optimizing image focus indicators such as the entropy measures [34]. Since the 

image domain entropy method is computationally very intensive, a phase history domain 

burst derivative algorithm was also proposed in [34]. The burst derivative algorithm is 

computationally more efficient than the entropy method but the burst derivative is periodic 

and there is no unique global minimum and hence can only be used in combination with 

the entropy method for the fine adjustment of motion estimates. Moreover, like any other 

parametric motion estimation algorithms based on low-order polynomial phase error models 

[32, 33], both the entropy and burst derivative methods are sensitive to system instabilities. 

In this chapter, a robust autofocus approach, referred to as AUTOCLEAN (AUTOfocus 

via CLEAN), is proposed for the motion compensation in IS AR imaging of moving targets. 

It is a parametric algorithm based on a very flexible data model, which takes into account 

arbitrary range migration and arbitrary phase errors across the synthetic aperture that may 

be induced by the unwanted radial motion of the target as well as propagation or system 

instability. AUTOCLEAN can be classified as an MSA, but it differs considerably from 

other existing MSAs [23, 24, 25, 26] since it automatically selects multiple scatterers (not 

necessarily well-isolated or very dominant) in the two-dimensional (2-D) image domain and 

combines their phase and RCS (radar cross section) information in an optimal way, which 

avoids the troublesome phase unwrapping step. Another good feature associated with AU- 

TOCLEAN is that it can be easily configured for different ISAR applications. Numerical 

and experimental results have shown that AUTOCLEAN is a very robust autofocus tool for 

ISAR imaging. 

The remainder of this chapter is organized as follows. Section 2.2 describes our flexible 

data model for ISAR imaging and formulates the problem of interest. The AUTOCLEAN 

algorithm is presented in Section 2.3. Several examples are provided in Section 2.4 to demon- 

strate the performance of AUTOCLEAN. Finally, Section 2.5 concludes the chapter. 

10 



2.2    Problem Formulation 

For ground-to-air ISAR imaging systems, the radar is stationary and the relative motion 

needed to obtain the synthetic aperture is induced by the moving target itself. When non- 

planar motion is negligible, the target motion with respect to the RLOS can be decomposed 

into radial motion of an arbitrary reference point on the target and tangential motion with 

respect to the reference point. In this case, the geometry of the radar and the target is 

illustrated by Figure 2.2. In Figure 2.2, Ro(t) denotes the distance from the reference point, 

(X0, Y0) in the X - Y coordinate system, which is the origin of the x - y coordinate system, 

to the radar at time instant t, R{t) denotes the distance between an arbitrary point {x,y) 

on the target and the radar, and 6(t) represents the relative angle of the target with respect 

to the local x - y coordinate system. 

When the variation of 9(t) is small during the coherent processing interval (CPI), the 

target can usually be viewed as consisting of a few point scatterers with constant RCS's and 

fixed locations [1] in the local x-y coordinate system. Assume that a normalized linear FM 

(chirp) signal is transmitted, which has the form 

s(i)=e^/o<+A     |i|<^, (2.1) 

where /0 denotes the carrier frequency, 7 is the chirp rate, and T0 is the pulse width. Then 

the signal received by a radar receiver after dechirping (or deramping) and A/D conversion 

is [12, 35]: 

r(n n\   -   IY" ake
j^fn[xk cose(-nT)+yk sine(nTWc 1 ei(4T/nAÄo(nT)/c] + e(nj n^ f 

U=i > 
0<n<N-l,    0<n<N-l, (2.2) 

where K is the number of scatterers on the target; ak, xk, and yk are the complex amplitude 

(RCS and phase), range, and cross-range locations of the fcth scatterer, respectively; c denotes 

the speed of light; N is the available sample points for each received chirp pulse and N is 

the number of along track positions; T is the pulse repetition interval; fn is the discretized 
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frequency and can be related directly to the time samples as follows 

/„ = /o + ^n, (2-3) 
7T 

with tn denoting the nth sample of the fast time measured with respect to the tracked time 

delay of the reference point; ARo(nT) denotes the range migration, which is the distance at 

the along track position n between the true reference point {unknown) and the one tracked 

by the radar; finally, e(n, n) denotes the clutter and noise. 

In addition to linear FM chirp pulses, step-frequency signal waveform is also widely 

used for ISAR imaging because of the simplicity of its design and implementation. It is a 

discrete implementation of the linear FM waveform. The wide bandwidth of a linear FM 

signal is obtained by transmitting a burst of narrow bandwidth pulses with different carrier 

frequencies at each along track position. The above data model (2.2) is still valid for the 

transmitted step-frequency signals. In this case, fn is just the center frequency of the nth 

transmitted pulse within each burst and a burst of N pulses is compressed to form a range 

profile at each along track position n. The pulse repetition interval T in (2.2) now becomes 

the burst period. 

Like most of the existing ISAR autofocus algorithms, we assume that the CPI is short and 

A0 = \e \{N - l)r] - 0(0)1 is small and the tangential motion is approximately uniform. 

Under this assumption, (2.2) can be simplified as 

K 

r(n, n)   = 5^ ake
j^kn+Ukf^  e^Wa^n"h^ +e(n,n), 

.fe=i J 
0<n<iV-l,    0<n<N-l, (2.4) 

where the frequency pair {cok,ük) is proportional to the location (xk,yk) of the kth scatterer, 

wa(n) is proportional to the range migration AR0{nT), and {^(n)}^1 denote arbitrary 

cross-range phase errors 2. 

2If the phase errors axe only caused by the target motion, then ip(n) is also proportional to the range 

migration ARo(nT) and is determined by ip(n) = 4TT/0 ARo(nT)/c. In this paper, we assume {ip(n)}n~0 

to be arbitrary to include other phase errors due to propagation or system instability. 
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Our problem of interest herein is to estimate {ua{n),ip(n)}^ from the phase history 

data   {r(n,n)}    received   by   the   radar. Once   the   estimates    {ua(n),^(n)}^ 

of {uJa(n),ip{n)}§=o are available, motion compensation can be done by simply multiplying 

r(n, n) with e
_J'Nfl>,l+^ft)] and the remaining task is to apply, for example, the conventional 

Range-Doppler imaging algorithm to the compensated phase history data, which can be 

efficiently implemented by using 2-D FFT. 

2.3    The AUTOCLEAN Algorithm 

As pointed out previously, AUTOCLEAN is an MSA. It can also be used as a DSA and 

the upgrade from DSA to MSA is very straightforward. For the sake of clarification, we first 

derive below the AUTOCLEAN algorithm based on a single dominant scatterer and then 

extend it to the case where multiple dominant scatterers are used. 

2.3.1    AUTOCLEAN based on a Single Dominant Scatterer 

Assume that there is a single dominant scatterer on the target with complex amplitude 

and 2-D location (ai,wi,öi). We can rewrite (2.4) in the following form: 

r(n,n)   =   s1(n,n)e*w-(n)n+*(ft)1 + efan), 

0<n<N-l,    0<n<N-l, (2-5) 

where 

Sl(n,n) = aie^
in+Ölfi), (2-6) 

and er{n,n) denotes the unmodeled target return plus the clutter and noise component 

e(n,n). Then the estimates of K(n),if>(n)}$^ and (ai,a>i,wi) can be obtained via opti- 

mizing the following nonlinear least-squares (NLS) criterion 

N—l N—l '     _ 2 

d (ai,üJi,üüU{uJa{n),ip(n)}n=:0) - ^ 2^ \r{n,n)     axe e •    \     ) 
v n=0 n=0 
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The above NLS problem can be solved by using an alternating optimization approach, which 

iterates the two steps of motion estimation and feature extraction 3.   The two steps are 

outlined as follows. 

Motion Estimation 

Assume that the feature estimates {a^üu&i} of {a>i,ui,üi} are given. Let 

Sifan) = a1e
J"(,&in+filR). (2.8) 

Then minimizing d (ai,wi,üu{ua(n),il>{n)}f!^o) becomes minimizing 

C2 (K(n), VKnMro1) = £ E Hn, ft) - h(n, n)^(fi)n+^f , (2.9) 
N-l N-l 

EE 
n=0 n=0 

or 
N-l 

£ 
n=0 

C3 (wa(n), iKn)) = £ H".») - *i(n> ft)e'Mft>n+^)]| , (2.10) 

which yields 

üa(n) = arg max 
wa(n) 

N-l 

E 
n=0 

£e-J'w-(ft)n[s;(n,n)r(n,n)] (2.11) 

and 

^(n) =angle(x;1e-iMft)B[*Kn.ft)'-(n,n)]}, (2-12) 
I n=0 J 

where angle(rr) denotes the phase of re and (■)* the complex conjugate. Note that üa(n) can 

be obtained via 1-D FFT with zero-paddings (for high accuracy) and ip(n) can be calculated 

easily as well. 

Feature Extraction 

Now assume that the motion estimates {u}a(n),ip{n)}n=o of {ua(n),ip(n)}%~o are given. 

Then minimizing Cx (on,ux,üi, {ua(ft),V>(ft)}n=o) becomes minimizing 

N-l N-l 

n=0 n=0 

C4 (auuuüh) = £ E Hn,n) - a1e**»+ölfl>|a , (2.13) 

3Feature extraction is a terminology widely used in pattern recognition. Many target recognition sys- 

tems use the complex amplitudes and locations of target scatterers as features for classification. Herein 

we borrow this terminology to represent the estimation of complex amplitudes and locations of target 

scatterers. 
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where 

f(n, n) = r{n, n)e^N")"+^")]. (2.14) 

After simple mathematical manipulations [36], the feature estimates {ü^wi,^} oi{ai,Ui,üi} 

can be determined as 

(L)I,CJI) = arg max 

and 

N-1N-1 

EE 
n=0 n=0 

£ J2 r(n,n)e-j^n+Qin) (2.15) 

1 NN V      ' 

Note that (o>i,c5i) are obtained as the location of the dominant peak of the scaled 2-D 

periodogram |En=To1E£olf(n>")e":'(a'in+ölß)| > which can be efficiently computed by us- 

ing 2-D FFT with zero-paddings. Then &i is simply the complex height of the peak of 

E^o1 Efc,1 r(n, n)e-^n+&^/NN. 

AUTOCLEAN is an alternating optimization approach to the NLS criterion in (2.7) 

which iterates the above two steps. To speed up the convergence, we use the envelope cross- 

correlation method [1] for the initial motion estimation. With the above preparations, we 

now summarize the AUTOCLEAN algorithm based on a single dominant scatterer. 

Step 0: Obtain the initial motion estimates via the envelope cross-correlation method. 

Step 1: Compute the feature estimates {ai,d>i,wi} of {ori.wi.öi} by using (2.15) and 

(2.16). 

Step 2: Calculate the motion parameters by using (2.11) and (2.12). 

Step 3: Repeat Steps 1 and 2 until the relative change of the cost function in (2.7) 

between two consecutive iterations is less than some pre-determined threshold, say 10~3. 

2.3.2    AUTOCLEAN based on Multiple Scatterers 

Like other existing DSAs [1, 21, 22], when there is a well-isolated very dominant scatterer 

on the target, the above AUTOCLEAN algorithm works very well and the latter performs 

slightly better than the former since the latter can track the range migration more accurately 

than the former. However, the assumption about the availability of such an isolated dominant 
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scatterer is more often than not violated in practice. This problem can be alleviated by 

tracking the centroid of multiple strong but not necessarily very dominant scatterers. This 

is the basic idea behind MSAs. Existing MSAs [23, 24, 25, 26] need troublesome phase 

unwrapping and do not exploit the RCS information of each scatterer. Below, we avoid this 

problem by extending the AUTOCLEAN algorithm to the case of multiple scatterers. 

Assume that there are K strong scatterers with features {ak,uk,ük}k=1 (selected auto- 

matically by the AUTOCLEAN algorithm). (Note that K can be much smaller than the 

true number K of the target scatterers.) Let K denote an intermediate number of strong 

scatterers, i.e., K = 1, 2, • • •, K. By assuming K strong scatterers, we can, similarly to 

(2.5), rewrite (2.4) as 

r(n,n)   =   sk(n,n)ej^n+^n)] + eR(n,n), (2.17) 

0<n<N-l,    0<n<N-l, 

where 

^(n,n) = Ea^w), (2.18) 

and ek(n,n) denotes the unmodeled target return plus the clutter and noise component 

e(n,n). Both the motion estimates and the feature estimates of the K scatterers can be 

obtained via minimizing the following NLS criterion 

2 

C5({ak,cük,u)k}%=1,{u}a(n),ip(n)}%=j) = E _E 
N-1N-1 

n=0 n=0 
r(n, n) 

K 
,j(ü>kn+wkn) 

k=l 

eJ[w0(n)n+'i/'(n)] 

(2.19) 

Before we present the AUTOCLEAN algorithm utilizing multiple scatterers, let us first 

introduce the two steps (motion estimation and feature extraction), which constitute the 

computational kernel of the proposed algorithm. 

Motion Estimation 

The motion estimation algorithm presented in the previous subsection can be directly 

extended to the multiple scatterer case. Assume that the feature estimates \^k,^k,^kjk=1 
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of {ak,Vk,uk}k=i are given. Let 

K 

1 ^M = £^ei(**nW0> (2.20) 

denote the estimate of sk(n, n) in (2.18). By replacing the §i(n, n) in Equations (2.9) through 

(2.12) with Sx(n,n), we get 

ua(n) = arg max j2 e-jw.(«)n [§*k(n,n)r(n,n)] 
n=0 

and 

^(n) = angle ( £ e"^" [s*k(n, n)r(n, nj\) 

(2.21) 

(2.22) 

Feature Extraction 

Once  the  motion estimates  {a>a(n),^(n)}ö  are  available,   the  feature  estimates 

tak,u)k,&k\ _   can be obtained via minimizing 

JV— I JV— J 

C6 ({a^cjfc^fc}^) = £ £ 
JV-1 JV-1 

EE 
n=0 fi=0 

f(n,n)-Eatei(,,,inW) 

/t=i 

(2.23) 

where f(n, ft) is defined in (2.14). Relaxation-based optimization techniques including CLEAN 

[36, 37] and RELAX [36] may be used to deal with the above NLS optimization problem. 

We have found (see Appendix) that for our problem of interest, in which motion estimation 

is of the major concern and feature estimates are only by-products of the optimization pro- 

cess, CLEAN is computationally much more efficient than RELAX and can provide similar 

motion estimation performance than the latter and hence is preferred. 

Before we summarize the CLEAN algorithm, let us first present the following prepara- 

tions. Assume jdj,Wi,Wij. n .^, are given. Let 

zk(n,n)=r(n,n)-   £   a^n^\ 

Then the estimates of (ak,ujk,ü)k) can be obtained via minimizing 

(2.24) 

C7(ak,uk,ük) =EE \zk(n,n)-ake^n+^ (2.25) 
n=0 n=0 
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which yields 
N-1N-1 

(u)k,uk) = arg max 
\ / Ulk ,Wk 

and 

f) £«fc(n>n)e-^B+ö»fl> 
n=0 n=0 

(2.26) 

- 2^w=0 2^n=0 Zk\n,ll)t.  ,    27") 
fc ~ AW ' K '    ' 

With the above preparations, we now summarize the CLEAN algorithm. Let K denote 

the intermediate number of target scatterers. 

Step (1): Assume K = 1. Obtain {wi.wi} and &i from f(n,n) by using (2.26) and 

(2.27), respectively. 

Step (2): Assume K = 2. Compute z2(n,n) with (2.24) by using {a>i,Äj,Q!i}.=i obtained 

in Step (1). Obtain {a>2,£2} and a2 from z2(n,n) by using (2.26) and (2.27), respectively. 

Step (3): Assume K = 3. Compute z3(n, n) with (2.24) by using {u>;, &i, &i} obtained 

in Steps (1) and (2). Obtain {w3,w3} and a3 from z3(n,n) by using (2.26) and (2.27), 

respectively. 

Remaining Steps: Continue similarly until K = K. 

The flow chart of the proposed AUTOCLEAN algorithm is shown in Figure 2.3, which 

iterates the above motion estimation and feature extraction steps. 

The proposed AUTOCLEAN algorithm can be summarized as follows. 

Step 0: Obtain the initial motion estimates via the envelope cross-correlation method. 

Step 1: Assume K = 1. 

Substep (a): Obtain {<^k,^k,&k}k=1 by using Step (1) of CLEAN. 

Substep (b): Calculate {u}a(n),i>(n)}S=o by using (2.21) and (2.22). 

Substep (c): Compute Uük,u)k,ak} _  via CLEAN by assuming K strong scatterers. 

Substep (d): If practical convergence (to be discussed later on) is achieved, then go to the 

next step; otherwise, go back to Substep 1(b). 

Step 2: Assume K = 2. 

Substep (a): Obtain {uk,u}k,ak)k^ by using Step (2) of CLEAN. 

Substep (b): Calculate {u)a(n),${n)}§-J by using (2.21) and (2.22). 
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Substep (c): Compute {ük,uk,ak} _  via CLEAN by assuming K strong scatterers. 

Substep (d): If practical convergence is achieved, then go to the next step; otherwise, go 

back to Substep 2(b). 

Step 3: Assume K = 3. 

Substep (a): Obtain {^k,&k,&k}k=3 by using Step (3) of CLEAN. 

Substep (b): Calculate {wa(n), ^(n)}^1 by using (2.21) and (2.22). 

Substep (c): Compute {&*,<£*, o*}      via CLEAN by assuming K strong scatterers. 

Substep (d): If practical convergence is achieved, then go to the next step; otherwise, go 

back to Substep 3(b). 

Remaining Steps: Continue similarly until K = K. 

The "practical convergence" in Step K of the above AUTOCLEAN algorithm may be 

determined by checking whether the relative change of the cost function in (2.19) between 

two consecutive iterations is less than some pre-determined threshold, say 10-3. 

We remark that the above AUTOCLEAN algorithm differs considerably from other MSAs 

[23, 24, 25, 26] in several aspects: a) dominant scatterers are selected automatically in the 

2-D image domain; b) scatterers may not be well-isolated or very dominant; c) complex 

amplitude information from each selected scatterer is combined in an optimal way; d) the 

troublesome phase unwrapping step is avoided. Compared to other parametric algorithms 

[32, 33, 34], AUTOCLEAN is more robust since it is based on a more flexible data model 

than the former and can more effectively mitigate the interference among different scatter- 

ers. The computational kernel of AUTOCLEAN is CLEAN, which is computationally very 

efficient and involves only a sequence of 2-D FFTs that can be easily implemented using 

currently available FFT chips, such as TMC2310 [38], A41102 [39], and TM-66 swiFFT [40]. 

Hence it can be easily configured for real-time applications. Another good feature associated 

with AUTOCLEAN is that its performance can be progressively improved by assuming a 

reasonably larger number of strong scatterers, K, for the target. In other words, K can be 

either pre-determined or increased until the autofocused ISAR image is satisfactory. 
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2.4    Numerical and Experimental Results 

We have tested AUTOCLEAN with a large confidential set of measured ISAR data 

[41]. The proposed algorithm has proved to be very robust and significantly outperforms 

other existing algorithms (including DSAs, MSAs, and PGA) [41]. Unfortunately, since 

the data set is classified, we are not authorized to report the experimental results in the 

open literature. Instead, we use numerical examples to demonstrate the performance of 

AUTOCLEAN. 

In the following examples, we use the simulated MIG-25 aircraft data provided by the 

Naval Research Laboratory as the turntable target data and then add range migration and 

phase errors to the turntable data to simulate a moving aircraft. The data matrix is 64 x 

64 (i.e., N = N = 64). The wB(n) in (2.11) and (2.21) is obtained via 1-D FFT with 

zero-padding to 128. The (u>iA) in (2.15) and (wk,uk) in (2.26) are obtained via 2-D 

FFT with zero-padding to 128 x 128. We have used 10-3 to test the practical convergence 

of our algorithm. Windowed (Taylor window with parameter 4 and 50 dB sidelobe level 

[42]) 2-D FFT with zero-padding to 256 x 256 is used to form the ISAR images. The 

performance of the proposed AUTOCLEAN algorithm is also compared with that of other 

two popular autofocus approaches including Haywood and Evans' MSA [24] and PGA [30]. 

(Other existing MSAs [23, 25, 26] perform similarly to Haywood and Evans' method and 

hence are not considered herein.) Since Haywood and Evans' MSA and PGA can only be 

used for phase correction, the conventional envelope cross-correlation method [1] is used first 

for initial motion compensation, particularly for range alignment. 

Let us first consider an example in which there is an isolated very dominant scatterer on 

the target. The 2-D image and 3-D mesh plot of the target are shown in Figures 2.4(a) and 

(b), respectively. Figure 2.4(c) shows the uncompensated image from which we can observe 

severe image blurring due to the target motion. The ISAR images after autofocusing using 

Haywood and Evans' MSA, PGA, and AUTOCLEAN are shown in Figures 2.4(d), (e), and 

(f), respectively. In this example, only one dominant scatterer is used by Haywood and 

Evans' MSA and AUTOCLEAN and hence both methods are in fact DSAs. Note that, as 
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expected, all of the three algorithms produce well focused ISAR images and AUTOCLEAN 

performs slightly better than the other two approaches since AUTOCLEAN can provide 

much more accurate range alignment than the envelope cross-correlation method. 

Now we consider an example where the target does not have a single very strong isolated 

dominant scatterer. The 2-D image and 3-D mesh plot of the target are shown in Figures 

2.5(a) and (b), respectively. Figure 2.5(c) shows the original uncompensated blurred image. 

Five scatterers (i.e., K = 5) are used by Haywood and Evans' MSA and AUTOCLEAN to 

extract the motion parameters. The ISAR images obtained via autofocusing using Haywood 

and Evans' MSA, PGA, and AUTOCLEAN are shown in Figures 2.5(d), (e), and (f), respec- 

tively. Note that AUTOCLEAN significantly outperforms the other two methods. Haywood 

and Evans' MSA completely fails in this example since several strong scatterers share the 

same range and they are not selected as the dominant scatterers used for motion estimation 

according to the minimum variance criterion [24]. Instead, other less dominant scatterers 

containing less accurate phase error information are selected and hence the phase averaging 

procedure does more harm than good since the use of these less dominant scatterers makes 

phase error estimation worse. Again, AUTOCLEAN gives the best result. 

Now we compare the computational efficiency of Haywood and Evans' MSA, PGA, and 

AUTOCLEAN. Since both PGA and AUTOCLEAN are iterative algorithms, it is hard to 

give explicit expressions for their computational complexities. Instead, we roughly compare 

their computational times needed on an ordinary PC with a Pentium II 400 MHz CPU. 

The computational times for Haywood and Evans' MSA, PGA, and AUTOCLEAN are 0.39, 

1.39, and 1.76 seconds, respectively, for the first example and 0.40, 8.59, and 10.38 seconds, 

respectively, for the second example. Note that AUTOCLEAN and PGA require similar 

computational times for our examples. 

2.5    Conclusions 

We have presented a robust ISAR autofocus algorithm, referred to as AUTOCLEAN, 

which is an efficient parametric algorithm based on a very flexible data model. It is more ro- 
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bust than other existing parametric autofocus algorithms since the former assumes arbitrary 

range migration and arbitrary cross-range phase errors and does not rely on the availability 

of a well-isolated very dominant scatterer. AUTOCLEAN is a multiple scatterer algorithm 

(MSA). By utilizing phase as well as RCS information of each scatterer in an optimal way 

and avoiding the troublesome phase unwrapping procedure, AUTOCLEAN significantly out- 

performs other existing MSAs. AUTOCLEAN is computationally very efficient and requires 

only a sequence of FFTs. Hence it can be easily implemented in real-time by using cur- 

rently available high speed FFT chips. Numerical and experimental results have shown that 

AUTOCLEAN is a very robust autofocus tool for ISAR imaging. 
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Appendix: Further Discussion on Feature Extraction Algorithms 

For the feature extraction step discussed in Subsection 2.3.2, besides CLEAN, another 

popular approach is RELAX [36]. CLEAN is computationally more efficient than RELAX 

but its resolution and estimation accuracy are inferior to RELAX [36]. Hence RELAX 

is preferred in many applications where high resolution and high estimation accuracy of 

individual scatterers are desired. However, for our problem of interest, motion estimation is of 

the major concern and the feature estimates are only by-products of the optimization process. 

By comparing (2.4) with (2.18), it can be observed that the accuracy of the motion estimates 

is mainly determined by the target fitting error En=o^n=o !«#(«>») ~ sK(n,n)\2 rather 

than by the accuracy of feature estimates {ak,u)k,Wk}k-v We have found that although the 

resolution and accuracy of CLEAN are inferior to RELAX [36], the target fitting error of the 

former is very close to that of the latter. This is especially true when the number of scatterers 

used for motion estimation (K) is small as compared to the true number of scatterers on the 

target (K). Below, we provide a simple example to illustrate this observation. 
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Assume that a target consists of K = 8 scatterers with equal strength (i.e., ak = 1 

for k = 1,2, • • •, 8). The eight scatterers are distributed in the pattern as shown in Figure 

2.6(a). There are four pairs of scatterers with each pair having a spacing around 2/3 of the 

conventional FFT resolution limit. Hence the scatterer pairs cannot be resolved by using 

FFT, as can be seen from Figure 2.6(b), which shows the original windowed FFT image of 

the target. Range migration and phase errors, which are the same as those used in Figures 

2.4 and 2.5, are added to the simulated target. For the sake of clarification, no noise is added 

(i.e., e(n, n) = 0) in this example. This is a very tough situation for IS AR autofocusing since 

all scatterers are of equal strength and spaced very closely. 

Ambiguities exist for the data model in (2.4). Let ß0, ßi, and 70 denote arbitrary con- 

stants and define 

${n) = ßo + ßin + 1>{n), (2.28) 

w„(n) = To + wa(n), (2.29) 

&k = ake-**>, (2.30) 

ü)k=ujk- 70, (2.31) 

Öfc = ü>k - ßl- (2-32) 

Then it can be easily verified that ({&k,ük,ük}k=:i,{üa(n), V'(")}n=0
1) also satisfy the data 

model in (2.4). Nevertheless, these ambiguous solutions will only shift the original ISAR im- 

ages and hence will not affect the image quality. However, we cannot evaluate the estimation 

accuracy for most of the parameters based on this ambiguous data model. 

Yet we note that no ambiguity occurs to the magnitude of the complex amplitude and 

hence they can be used to evaluate the feature estimation performance. Figure 2.6(c) com- 

pares the estimates of {|ctfc|}f=1 obtained via CLEAN ("x") and RELAX ("o") to the true 

values (dot-dashed line) where the horizontal axis denotes the index of the scatterer (k). 

Note that, as expected, the RELAX feature estimates of individual scatterers are unbiased 

whereas the CLEAN estimates are not. To evaluate the motion estimation performance, 

we use the entropy as an image focus indicator.  Entropy is a terminology borrowed from 
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information theory and was used for IS AR autofocus in [34] (see also the references therein). 

Assume U(l,1), I = 0,1, • • •, L-l, I = 0,1, • • •, L-1, denote the complex ISAR image after 

autofocusing using the motion estimates. Then we calculate the entropy E of the focused 

image as follows: 

£=-££^(U) log t/(U), (2.33) 
1=0 l=o 

üM-^-^L.»,- <2-34> 
where 

In Figure 2.6(d), the entropy of the focused ISAR images obtained by using CLEAN ("x") 

and RELAX ("o") as the feature extraction methods is compared to the original value (dot- 

dashed line), which corresponds to the original image shown in Figure 2.6(b). In Figure 

2.6(d), the horizontal axis denotes the number of scatterers used for motion estimation (K). 

Note that, although CLEAN is inferior to RELAX in resolution capability and estimation 

accuracy for feature extraction, they provide similar motion compensation performance. 

As K is increased from 1 to 8, almost perfect motion compensation, as indicated by image 

entropy, is achieved via AUTOCLEAN. Figure 2.7 further illustrates this observation. Figure 

2.7(a) shows the windowed FFT image after initial motion compensation using the envelope 

cross-correlation method. Note that the image is still blurred due to uncompensated motion 

errors. Figures 2.7(b) through (i) show the windowed FFT images after autofocusing via 

AUTOCLEAN by increasing K from 1 to 8. Note that when K = 4, the image is basically 

focused but there is still some blurring. When K = 8, the image is almost identical to the 

true one shown in Figure 2.6(b). 
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Figure 2.1: Diagram of a conventional ISAR imaging system. 

Radar 

Figure 2.2: A geometry of the radar and the target. 
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Figure 2.3: Flow chart of the AUTOCLEAN algorithm. 
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Figure 2.4: ISAR images of a simulated MIG-25 aircraft with one very strong isolated dom- 
inant scatterer. (a) Original 2-D windowed FFT image, (b) Mesh plot of the original 2-D 
windowed FFT image, (c) Windowed FFT image before motion compensation, (d) Win- 
dowed FFT image after autofocusing using Haywood and Evans' MSA based on a single 
dominant scatterer. (e) Windowed FFT image after autofocusing using PGA. (f) Windowed 
FFT image after autofocusing using AUTOCLEAN based on a single dominant scatterer. 
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Figure 2.5: ISAR images of a simulated MIG-25 aircraft with no very strong isolated dom- 
inant scatterers. (a) Original 2-D windowed FFT image, (b) Mesh plot of the original 
2-D windowed FFT image, (c) Windowed FFT image before motion compensation, (d) 
Windowed FFT image after autofocusing using Haywood and Evans' MSA based on K = 5 
dominant scatterers. (e) Windowed FFT image after autofocusing using PGA. (f) Windowed 
FFT image after autofocusing using AUTOCLEAN based on K = 5 dominant scatterers. 
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Figure 2.6: Comparison of CLEAN and RELAX, (a) The true image, (b) Original windowed 
FFT image of the simulated target, (c) Comparison of amplitude estimation accuracy, (d) 
Comparison of image focus quality (entropy). 
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Figure 2.7: Performance of AUTOCLEAN as K varies, (a) Windowed FFT image after initial 
motion compensation by using the envelope cross-correlation method, (b)-(i): Windowed 
FFT images after autofocusing via AUTOCLEAN by increasing K from 1 to 8. 
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3.    Complex IS AR Imaging of Maneuvering Targets 
via the Capon Estimator 

3.1    Introduction 

Synthetic aperture radar (SAR) and inverse synthetic aperture radar (ISAR) [1, 2] image 

formation and target feature extraction are becoming increasingly important in many civilian 

and military applications [3, 4]. In SAR/ISAR imaging, the high resolution in range is 

obtained by transmitting a signal with a large bandwidth, whereas the high resolution in 

cross-range can be achieved by utilizing the relative motion between the target and the 

radar to form a large synthetic aperture. SAR and ISAR are used to produce high resolution 

images of stationary objects and moving targets, respectively. The principle underlying 

SAR (especially spotlight-mode SAR) and ISAR is extremely similar. The major difference 

between SAR and ISAR lies in the nature of the relative motion. In SAR, the radar is moving 

while the object to be imaged is stationary and hence the relative motion is cooperative. 

This situation is reversed in ISAR. In ISAR, the radar is stationary (or moving) while 

the target to be imaged is moving in a noncooperative way. This noncooperative motion 

makes the ISAR imaging more difficult than the SAR imaging. Because of this, although 

SAR technology is well established and nearly 30 spaceborne and airborne SAR systems 

are currently in operation [3], ISAR technology is still at the R&D stage and only a few 

experimental systems are reported under development in the literature [5]. 

High resolution complex SAR/ISAR image formation are very important for improving 

the automatic target recognition (ATR) performance. The conventional image formation 

algorithms based on Fourier transform are known to be robust but suffer from poor resolution 

and accuracy and high sidelobes. Many modern spectral estimation techniques have been 

devised and applied to SAR/ISAR image formation to improve resolution and accuracy and 

reduce sidelobes. In [6, 7], many parametric and nonparametric spectral estimation methods 

are compared and discussed for their merits for SAR/ISAR imaging. Many of these methods 

are used for high resolution intensity image formation or power spectral estimation. Recently, 

complex image formation and analysis have attracted a lot of attention since extracting the 
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desired information about targets from radar returns requires using both the amplitude and 

phase of the complex image [8]. 

The well-known Capon method [9] was proposed to estimate frequency-wavenumber 

power spectral density. Since then, its principle has been widely applied to spectral esti- 

mation, direction-of-arrival estimation, and adaptive temporal/spatial/spatial-temporal fil- 

tering. It can also be used for complex spectral estimation. It has been shown recently in [10] 

that the nonparametric Capon estimator belongs to the class of matched-filterbank spectral 

estimators. Capon and its reduced-rank variations [11, 12] can produce high resolution SAR 

images with low sidelobes and reduced speckles, which can be used to significantly improve 

the ATR performance [13, 14]. Moreover, since the Capon method is nonparametric, it is 

more robust against data mismodeling errors than parametric algorithms. 

Most ISAR imaging algorithms (including the aforementioned Capon) are based on the 

range-Doppler processing, which implies that the Doppler shifts nearly remain constant dur- 

ing the coherent integration time. Unfortunately, for maneuvering targets, this assumption 

is more often than not violated. This observation has motivated the use of various time- 

varying spectral analysis methods on ISAR imaging of maneuvering targets [15]. In [15], the 

popular Wigner-Ville Distribution (WVD) method [16] is applied for ISAR imaging of ma- 

neuvering targets. However, quadratic time-frequency analysis algorithms including WVD 

cannot be used for the complex image formation problem considered herein. Another pop- 

ular approach is the Short-Time Fourier Transform (STFT) method [16], which is a linear 

time-frequency signal representation method and can be used for complex image formation. 

Major drawbacks associated with the STFT method include poor resolution and accuracy 

and high sidelobes. 

In this chapter, we present an adaptive Capon spectral estimation algorithm for the 

complex ISAR image formation of maneuvering targets. It has better resolution and lower 

sidelobes than the STFT method. The algorithm is an efficient recursive implementation of 

the two-dimensional (2-D) Capon complex spectral estimator, which involves only FFT and 

simple matrix operations. 

The reminder of this chapter is organized as follows. The problem of interest is formu- 
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lated in Section 3.2. In Sections 3.3 and 3.4, we present the recursive forward-only (F-O) and 

forward-backward (F-B) Capon algorithms, respectively. ISAR imaging examples are pro- 

vided in Section 3.5 to illustrate the performance of the proposed methods. Finally, Section 

3.6 concludes this chapter. 

3.2    Problem Formulation 

For maneuvering targets with nonuniform rotational motion, the Doppler shift corre- 

sponding to the cross-range of each scatterer is time-varying [15]. In this case, the direct 

application of spectral estimation methods will produce blurred images. To mitigate this 

problem, we can apply the STFT method to produce time-varying complex ISAR images. 

However, the STFT method suffers from poor resolution and accuracy and high sidelobes. 

In this paper, we will present an adaptive Capon algorithm for the complex ISAR imaging 

of maneuvering targets. Similar to STFT, we will use a sliding rectangular window along 

the cross-range dimension and the observed signal within the sliding window is assumed to 

be approximately stationary. Then the Capon method is applied to the data within the 

window to produce high resolution ISAR images. As the window slides along the cross-range 

dimension, time-varying high resolution ISAR images can be obtained. This approach over- 

comes the drawbacks of the STFT method and preserves the good features of the Capon 

estimator, including high resolution, low sidelobes, reduced speckles, and robustness against 

data mismodeling errors. 

Let JV denote the number of range samples and N denote the sliding window length along 

the cross-range dimension. Let {zn>t-fi, n = 0,l,--:,iV-l,n = 0,l,---,iV'-l} denote the 

phase history of a maneuvering target of interest within the sliding window ended at position 

t in cross-range. For a frequency pair (w, ü>) of interest, which are proportional to range and 

cross-range, respectively, zntt-n can be written as 

Znjt-n = at(w, o)^"w+^-1-n>°> + en,t-n(u, w),    n = 0,1, • • •, N - 1, n = 0,1, • • •, N - 1, 

(3.1) 

where at(w, O) denotes the time-varying complex amplitude of a 2-D sinusoid with frequency 
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(w,ö) and enit_n(w,ö)) denotes the unmodeled noise and interference at frequency (u,w). 

Note that at(oJ, w) is assumed to change little within the sliding window so that {zn>t_n, n = 

0,1, • • •, N - 1, n = 0,1, • • ■, N - 1} is approximately stationary. 

Our problem of interest herein is to obtain the estimate of at(w,Q) from the 2-D data 

sequence fat-*, n = 0,1, • • •, N - 1, n = 0,1, • • •, N - 1} for all (w, w) of interest as t varies. 

More specifically, we want to devise an efficient recursive implementation of the 2-D Capon 

method for this time-varying complex spectral estimation problem. 

Both the nonparametric F-0 and F-B Capon algorithms can be used for complex spectral 

estimation. The former uses only the forward sample covariance matrix to calculate the 

finite impulse response (FIR) filters adaptively while both the forward and backward sample 

covariance matrices are used by the latter. It has been shown in [10] that F-B Capon 

outperforms F-0 Capon with smaller biases. However, for the recursive implementation, the 

latter is computationally more efficient than the former. In the following two sections, we 

will present the recursive implementations for both of them. 

3.3    Forward-Only Capon 

In this section, we first briefly review the 2-D F-0 Capon algorithm. Then an efficient 

batch-mode implementation scheme is presented for initialization. Next, we derive the re- 

cursive F-0 Capon algorithm. Finally, we analyze the computational complexity of the 

proposed implementation. 

3.3.1    Brief Review of F-O Capon 

Capon is a nonparametric adaptive matched-filterbank approach [17, 10]. It follows two 

main steps: (a) pass the data {zn>t-n, n = 0,1, • • •, N - 1, n = 0,1, • • •, N - 1} through a 

2-D bandpass filter with varying center frequency (w,ö); (b) obtain the estimates at(uj,ü) 

of at(cj,ü>), for all u 6 [0,2TT) and Q G [0,2?r) of interest, from the filtered data.  Assume 
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that the bandpass filter Ht(u,Q) used is an (M x M)-tap 2-D FIR filter having the form 

Ht(u,u>) 

Äo,o,t(w,w) Äo,i,t(w,w) 

^i,jflr-i,t(w>ö) 

/iM-i,o,t(w,a;)   /IM-I,M(W,W)   •••   /IM-I.M-M^^) . 

(3.2) 

Let 

ZI*_I   — 
2i+l,t-F-J0r+l ^+1,4-^^+2 

2j+M-l,t-F-M+l     ^+Af-l,t-r-M+2 

( / = O,I,---,L-I, r=o,i,- 

zl,t-l 

zl+l,t-l 

•    zl+M-l,t-T 

,1-1) (3.3) 

denote the (I, Z)th MxM forward data matrix constructed from the data sequence {zntt-.n, n = 

0,l,-'-,N-l,n = 0,l,---,N-l},whereL = N-M + l, L = N-M + 1. Define 

ht(w, w) = vec {Ht(w, w)} , (3.4) 

and 

T       T xl     x2 

{zM_r}, (3-5) 

with xfc being the fcth column of X and (-)T denoting 

Zl,t-l = vec 

r iT 

where vec{X} = 

the transpose. Let 

¥t=2-;Z^ zi,t-izi,t-i' 
i=o i=o 

denote the forward covariance matrix, where (-)H denotes the conjugate transpose, and 

L-1L-1 
.H (3.6) 

^.iflrCw, w) = a^r(w) ® aM(w), (3.7) 

with ® denoting the Kronecker product [18], 

ajtf(w) = 1   eJ'w   •••   e j(M-l)w (3.8) 
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and 

a#(w) l     eJü     . . .     eJ{M-l)u> (3.9) 

The adaptive Capon filter passes the frequency (w,w) without any attenuation, i.e., we let 

hf (u},ü)a.M,M(u}>ü) = l and minimize the output power hf (w,ü)Ptht(ü>,ü>). The F-0 

adaptive Capon filter hFQt{cü,ü) has the form [10] 

h?0M») - aJfi(W)ö)Pr1a^ö)' 
(3.10) 

The F-0 Capon estimate of the complex amplitude at(o;, w) is given by [10] 

*M.a(u>u)Ft  Pr=o ^I=Q 
z',«-«e J (3-11) 

«FO,t(w'w) LLa^Av(o;,a;)Pt W.M^W) 

3.3.2    Efficient Initialization Algorithm 

Direct implementation of the 2-D Capon estimator in (3.11) is computationally demand- 

ing since it involves the inversion of the large dimension matrix Pt and the complex am- 

plitudes at{u,Q) at different frequency points (w,w) are calculated independently. Next, 

we present an efficient batch-mode implementation algorithm, which can be used as the 

initialization step of the proposed recursive Capon algorithm. 

Let 

Z, = (3.12) 
Z0,t-L+1     •••    zL-l,t-L+l     •••    Z0,t     •••    ZL-l,t 

denote the data matrix formed from the forward data vectors. Then (3.11) can be rewritten 

as 

LLa£>x?(w,w)Pr1aM,Aar(w,ö)' 

A Ct{üJ,ü) 

&FO,t(u>Q) 

LLdt{uj,üjy 

where 

ct(u,ü) = a^^.öjP^Z^^w.ö), 

(3.13) 

(3.14) 
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and 

dt(u),ü) = a^(o;,cD)Pt-
1aW)M(a;,ä)). (3.15) 

Direct calculation of ct{u),ü), dt(uj,Q), and hence aFQt(u,ü) is computationally intensive. 

Below we present an efficient FFT based implementation that can be used to significantly 

reduce the amount of computations. 

Let Dt be the Hermitian square root of P^1 [19], i.e., 

P,-1 = DtDf. (3.16) 

Then Ct{w,ü>) and dt(u,ü) can be computed in the following way: 

Ct{utü) = Fa{u>,ü)Fß(u,ü), (3.17) 

and 

dt{u,iD) = \\Fa(u,G))\\\ (3.18) 

where 

Fa(W,ö)=a£iÄ(o;>ö)Di> (3.19) 

and 

F/,(w,cD) = (DfZt)ai|L(w>ä>). (3.20) 

Note that Fa(u, ü) and Fß(u, UJ) can be calculated efficiently via 2-D FFT. By applying FFT 

whenever appropriate, significant computational savings can be achieved in constrast to the 

direct implementation. Quantitative results on the speedups will be given in Subsection 

3.3.4. 

3.3.3    Efficient Recursive Algorithm 

After initialization, &pott+1{u, w) can be updated from &pQjt(u, Q) by updating Ct+i(w, w) 

and dt+l(u, ü), respectively, from ct(u, Q) and dt(u, w). Our problem, like the windowed least 

squares estimation problem [20], requires both updating and downdating. (Updating and 

downdating are used to adjust the solution to the problem of interest when a new observa- 

tion is added (updating) or an old observation is deleted (downdating).) We have found that 
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significant computational savings can be achieved by applying the Matrix Inversion Lemma 

[21], which has been widely used in adaptive filtering [22] and recursive system identification 

[23], to update and downdate Pt+\ from Pt
_1. One major feature of our algorithm is to apply 

FFT whenever appropriate to further reduce the amount of computations. Below we present 

our recursive algorithm. 

Let ct+i(uj, öd) and dt+i(u, ü) be defined similarly to ct+1(u, ü) and dt+i{u, ü) in (3.14) and 

(3.15), respectively, except that K,t+i-n, n = 0,1 • • •, N -1, n = 0,1, • • •, N -1} is replaced 

by an intermediate data sequence {zn>t+i-n, n = 0,1 • • •, N - 1, n = 0,1, • • •, N], which is 

obtained by adding a new observation vector {zn>t+l,n = 0,1 • • ■,N-1} to the former data. 

Then the recursive algorithm can be summarized into two steps: (a) update ct+i(w,w) and 

dt+i(u;,ü>) from Ct(u),ü) and dt(u,ü), respectively, from the intermediate data sequence; (b) 

downdate cm(o;,ü>) and dm(w,ü)), respectively, from ct+i(u,0j) and dt+1(u,ü) by removing 

the oldest observation vector {znit_N+2,n = 0,l---,iV - 1} from the intermediate data 

sequence. Hence the Matrix Inversion Lemma is applied twice for updating öiFQt+l(u},ü)) 

from a-pQt(u),uj). 

We first consider how to update Ct+i(co,ü>) and dt+i{u},ü) from Ct(o;,ü>) and dt(u,Q), 

respectively. 

Let 

Zi+i — Z0,t+1     Zl,t+1     - * '    zL-l,t+l 

Zt+i = 

(3.21) 

(3.22) Zt   Zt+i 

Pt+1 = ZmZ£1=Pt + ZmZf+1, (3.23) 

and let the L x L matrix Gt+1 be the Hermitian square root of (i + Z^P^Zt+i) , i.e., 

G4+1Gf+1 = (I + ZJUP^Zm)"1 • (3-24) 

By using the Matrix Inversion Lemma, Pt+\ can be updated from Pt as follows 

PA=Pr1-*m*£i, (3-25) 
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where 

St+^Pr'Zt+iGt+i. (3.26) 

Let 

U(u,Q) = ^AM(u,Q), (3.27) 

f.(W,ö) = (*g.1Zt)aiJt(ü;>ö)> (3.28) 

and 

fG(u,) = Gf+1al(o;). (3.29) 

Then it follows that 

ct+i(w,ü)   =   a£)Ä(w,ö)Pi;1
1ZH.iaJ(j£+1(w,w), 

=   ct(a;,ä)) + fJ(a;,ä)){fGHe-^-f*(a;,ä))}, (3.30) 

and 

4n(w,ö)   =   a^Cw.öJP^a^jQrCw.ö), 

=   dc(a;,ä))-||£,(«,fi>)||2, (3.31) 

where || • || denotes the Euclidean norm. Note that f#(w,ö)), f*(w,ö), and fG(w) in (3.30) 

and (3.31) can be calculated efficiently via FFT. 

Now consider downdating ct+i(w,ö) and dt+i(w,ö), respectively, from Ct+i(w,ü>) and 

dt+i(u),D). The derivation is very similar to the previous updating process and the down- 

dating process is outlined as follows. From 

Pm = Pm - Zt_L+1Zl-L+1, (3-32) 

and using the Matrix Inversion Lemma once again we have 

where 

**_!+! = Pt-+
1
1Zt_L+iGt_£+1, (3-34) 
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with the L x L matrix Gt_L+l satisfying 

Gt-i+1Gl-L+l = (I - Zf.^PiV^)-1. (3.35) 

Hence Ct+i(o;,ü;) and dt+i{u},ü) can be downdated using the following equations 

ct+l(uj,ü) = {PH-ICW.ö) - tf (w, w) fo(w) - f»(w,ö)]} eJ", (3-36) 

and 

where 

dt+i(cj,ä>) = dt+i(w,u;) + ||f$(u;,ü;)||2, (3.37) 

f*(w,ö) = #f_L+1a^>J0r(w,ä)), (3.38) 

f*(W,ä>) = (CL+IM a^Cw.ö), (3.39) 

and 

fäH = Gf_I+1al(a;). (3.40) 

.Note again that f*(w,w), f*(w,w), and fc(w) in (3.36) and (3.37) can be calculated efficiently 

via FFT. 

Once ct+i(u>,w) and dt+l{co,ü)) have been obtained, aFO.t+i^'0) can be calculated usin§ 

(3.13). The F-0 Capon algorithm is summarized in Table 3-1. 

Now we compare our recursive implementation algorithm with other possible implemen- 

tations. Since F-0 Capon can be interpreted as an adaptive FIR filtering approach, one 

possible method is to apply the existing efficient VLSI implementation algorithms, such 

as the adaptive Capon beamforming (also called minimum variance distortionless response 

(MVDR) beamformer) algorithms proposed in [24, 25, 26], to obtain the adaptive Capon 

filters, which are then used to calculate the complex spectrum estimate. However, this is 

computationally expensive since the adaptive filters hFQt(u,ü) must be computed for ev- 

ery frequency pair (u,Q) of interest and the number of desired frequency pairs tends to be 

very large (e.g., 256 x 256 or larger). Our approach avoids this problem by combining the 

adaptive filter calculation with the complex spectral estimation together. Another possible 

way is to directly update and downdate the Hermitian square root Dt of Pt
_1. This is the 
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inverse updating and downdating concept discussed in [20]. However, even without consid- 

ering the overhead of updating Dm from Dt, the matrix multiplication Df Zt in (3.20) is 

computationally more demanding than our recursive algorithm. We have also considered 

other updating and downdating techniques for different matrix factorizations [19] and found 

that they are also not very suitable to our problem of interest. 

3.3.4    Computational Complexity 

The computational complexity of the proposed algorithm depends on the following pa- 

rameters: (a) N, the number of samples in range; (b) N, the sliding window length in 

cross-range; (c) M and M, the dimensions of the 2-D adaptive FIR filter; and (d) Np and 

Np, the dimensions of the ISAR images. For the sake of simplicity, we assume N = N, 

M = M, L = N - M + 1, and Np = Np. The computational complexities for the direct 

implementation (without using FFT) and the proposed efficient initialization method are 

compared in Table 3-II, where one flop is defined as one complex multiplication plus one 

accumulation. The computational complexity needed by F-0 Capon to update an image 

is also given in Table 3-II. From Table 3-II, it can be noted that, for the batch processing 

mode, the proposed initialization method is more efficient than the direct implementation 

since typically iVp > M and Np > N. This improvement is achieved due to the appropriate 

use of FFT. The larger the ratio of Np over M, the larger the speedup ratio. The recur- 

sive implementation is more efficient than the efficient initialization method. Computational 

savings of the recursive algorithm come from two aspects: (a) the appropriate application 

of FFT, and (b) the recursive updating and downdating of the sample covariance matrix 

inversion by using the Matrix Inversion Lemma. Compared to the STFT method, the F-0 

Capon algorithms are computationally more expensive. However, better performance (high 

resolution, low sidelobes, reduced speckles) can be achieved with the latter [10]. 

With the rapid development of DSP chips, it is not enough to only count the number 

of flops as a measure of algorithm efficiency. The computational kernel involved is also 

very important for the implementation using DSP chips. Matrix multiplications (includ- 

ing Z^Pr^+i, #t+i = Pt-xZt+1Gt+1, **.&, #t+i*g.i, ZlL+1P7+iZt-l+n *t-L+i = 
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Pi+iZt_I+1Gt_I+1, Ö>?_L+1Zt+u and #t_L+1$*L+1) and FFT are the dominant parts of 

the updating and downdating processes of our recursive algorithm. They can be easily and 

efficiently implemented using currently available DSP chips, such as the TM-66 swiFFT chip 

[27]. 

3.4    Forward-Backward Capon 

In this section, we first briefly review F-B Capon with emphasis on pointing out its 

difference from F-0 Capon. Since the deriviations of the initialization and recursive imple- 

mentation of F-B Capon is very similar to those of F-0 Capon, we only outline the necessary 

steps. 

3.4.1    Brief Review of F-B Capon 

The F-0 adaptive weight vector in (3.10) uses only the forward sample covariance matrix 

Pt. It is commonly believed that using both the forward and backward sample covariance 

matrices will lead to enhanced statistical performance. Using both the forward and backward 

sample matrices has the advantages of yielding a numerically better conditioned matrix [28], 

which may be an important reason to prefer it when the forward sample covariance matrix is 

ill-conditioned. The method so-obtained is referred to as F-B Capon. Further performance 

analysis shows that F-B Capon has smaller biases than F-0 Capon [10]. Below we briefly 

review the F-B Capon algorithm. 

Let 

Pt = Pt + JPfj, (3.41) 

denote the forward-backward sample covariance matrix, where J denotes the exchange matrix 

whose anti-diagonal elements are ones and all the others are zero. By replacing the Pt in 

(3.10) with Pt, the F-B adaptive Capon filter has the following form [10]: 

h.-p-oAu,u) = —= —o—: ; r- l°-^7 
' a£iÄ(w,ö)PrV*(w.0) 

46 



The forward and backward estimate of at(w,u) is given by [10] 

H      I       -\r>-l r^i-l TTL-I „       _„-j{lcj+(L-l-l)CJ}] 
,      _N        aM,M(U>^Pt     iE'=0  E'=0  Z^e J (OAO-\ 

By comparing (3.43) with (3.11), we observe that the only difference between F-0 and F- 

B Capon is that the forward sample covariance matrix Pf of the former is replaced by its 

forward-backward counterpart Pt. Since Pt can be calculated efficiently from Pt by using 

(3.41), for the batch processing mode, the amount of computations needed by F-0 and F-B 

Capon is basically the same. However, as shown next, for recursive implementation, F-0 

Capon is more efficient than F-B Capon. 

3.4.2    Summary of the F-B Capon Algorithm 

The F-B Capon estimate of at{u),ü) in (3.43) can be rewritten in the following compact 

form: 

where 

ct(u,ü) = a^(a;,ö>)Pt-1Zta^(a;,ä;), (3.45) 

and 

dt(w,ü) = a^KöOP^a^Kä}). (3-46) 

Similarly to the F-0 Capon algorithm, &FB,t+i(w>Q) can als0 be uPdated from ÄFB,t(w' ö) 

by updating cm(u;,ü>) and dt+i(w,Q), respectively, from Ct(u,G>) and dt(u,ü). This can be 

done in two steps: (a) update Et+i(w,ö) and Jm(w,ü>), respectively, from ct{u,ü) and 

dt(u,Q), where Zt+1(u),ü).an.d dm(u;,ä;) are defined similarly to cm(w,ä>) and dt+i{u,ü) in 

(3.14) and (3.15), respectively, except that the data sequence {sj>t+1_f, I = 0,1 • • •, L - 1,1 = 

0,1, • • •, L - 1} is replaced by {zl>t+1.h I = 0,1 • • •, L - 1, f = 0,1, • ■ •, L}; (b) downdate 

ct+1(uj,ü) and dt+i(tü,ü) from 6t(u>,Q) and dt(u,ü), respectively. 
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Before we summarize the steps needed by F-B Capon, let us first define the following 

notations. Let 

denote the {I, Z~)th backward data vector where (•)* denotes the complex conjugate and zM_f 

is defined in (3.5) as the (I, j)th forward data vector. Define 

Zt+i =    z0,t+i   zi,t+i   •' •   zz,-i,t+i    ' {SAH) 

and 

zt+1 = [zm i+i], (3-49) 
where Zm is defined in (3.21). The recursive implementation steps of the F-B Capon 

algorithm are summarized in Table 3-III. Note that there is no duality between the recursive 

F-0 and F-B Capon algorithms since, although the latter uses both the forward and backward 

sample covariance matrices to calaulate the adaptive weight vectors, it uses only the forward 

data vectors for amplitude estimation [10]. 

As pointed out before, for the batch processing mode, both F-0 and F-B Capon have the 

same computational complexities. However, for the recursive implementation, F-B Capon is 

less efficient than F-0 Capon and O (4M2L3 + 10M4L + 5LiVp
2 log2 Np) flops are required 

by F-B Capon to update an image, which are about twice as much as those needed by 

F-0 Capon. Matrix computations and FFT are still the dominant parts of the recursive 

implementation, which can also be easily and efficiently implemented by using currently 

available DSP chips. 

3.5    A Numerical Example 

We present an example to illustrate the performance of using the Capon algorithms 

for ISAR imaging of maneuvering targets. The signal phase history data of a simulated 

fast rotating MIG-25 airplane was provided to us by the Naval Research Laboratory. The 

numbers of range and cross-range samples are 32 and 512 , respectively. In this example, we 

choose the sliding window length in cross-range to be N = N = 32, the adaptive filter taps 
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M _ jjjr _ 12) an(i 2-D Kaiser windows [29] with shape parameter /? = 4 for the windowed 

FFT and STFT methods. Figure 3.1 shows the ISAR images obtained by applying the FFT 

and windowed FFT methods (with zero-padding) to the entire 32 x 512 data matrix. Note 

that the images are blurred due to the time-varying Doppler shifts in cross-range. Two 

examples out of the 481 time-varying ISAR images of dimension 256 x 256 obtained by using 

windowed STFT, F-0 Capon, and F-B Capon are shown in Figures 3.2(a)(b), (c)(d), and 

(e)(f), respectively. Comparing Figures 3.1 and 3.2, we note that the image blurring problem 

is mitigated. From Figure 3.2, it can be concluded that both F-0 and F-B Capon outperform 

the STFT method and F-B Capon performs better than F-0 Capon. 

3.6    Conclusions 

We have presented a computationally efficient approach of recursively implementing both 

the forward-only and forward-backward Capon algorithms for time-varying complex spectral 

estimation, which has applications in the complex ISAR imaging of maneuvering targets. By 

applying the Matrix Inversion Lemma and FFT where appropriate, the proposed approach 

is computationally much more efficient than the direct implementation of the algorithms. 
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TABLE 3-1 

SUMMARY OF RECURSIVE F-0 CAPON 

Step 1: Initialization 

Compute Pt = Efco1 EfcTo1 zi,t-tft-I> 
Compute Ft1 and find its Hermitian square root Dt; 

Compute: 

Fa(w,ö)=a£jJ(?(a;)ö)Dt; 
F/J(w,ö) = (DfZt)a*|L(w,ö); 

Ct(ü;>ö) = F0(w,w)F/j(ü;,w); 

dt(w,ö;) = ||Fa(a;)ä))||2. 

Step 2: Updating ct+i(w,ö>) and dt+i(w,ö)) 

Compute (i + Z^Pr^t+i)"1 and find its Hermitian square root Gt+i; 

Compute: 

*t+i = Pr1Zt+iGt+i; 

pt-+\ = pr1 - *«-i*S-i; 
f«(w,w) = #^ia^>Ä(w,ö); 
f*(w,ü>) = (*g.1Zt)a*>L(w,öi); 

fo(w) = GtVlM; 
Update: 
^(w.ö) = CtCw.ö) + #(w,ö) {fG(a;)e-^ - f*(w,ö)}; 

ekn(w,w) = dt(w,ä>) - ||f*(w,ä))||2. 
Step 3: Downdating ct+i(w,ä>) and dt+i(u;,ü)) 

Compute (i - Z^L+1Pr+iZt_£+1)
-1 and find its Hermitian square root Gt_£+1; 

Compute: 

*t-L+l = Pt+lZt-L+lGt-L+l! 

Pt+i = Pt+i ~~ Zt_L+iZt_£+1; 

f*(w, w) = ^[-L+iaM.M^' ö); 

f*(w,ö) = (^^i+iZt+i) a^Cw.ö); 

Downdate: 
ct+iCw.ö) = {CHI(U),ü) - ^(w, w) [fö(w) - f*(w,ö)]} e»'°; 

dt+^w.ö) = dt+i(u,ü)) + \\h(u,ü)\\2. 

Step 4: Computing &FQM-I^
Q

^ 
= LS&JV 
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TABLE 3-II 
COMPARISON OF COMPUTATIONAL COMPLEXITIES 

STFT or windowed STFT: O {\N% log2 Np) flops 

Direct Implementation: O (M2
(M

2
 + L2)N2) flops 

Efficient Initialization: O (jM6 + \MAL2 + M2N2 log2 Np) flops 

Recursive F-0 Capon: O (2M2L3 + 4M4L + 2LN2 log2 Np) flops 
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TABLE 3-III 
SUMMARY OF RECURSIVE F-B CAPON 

Step 1: Initialization 
Compute Pt = Efjo1 E^1 zl>t_izg_r and Pt = Pt + JPf J; 
Compute Pt

_1 and find its Hermitian square root Dt; 
Compute: 
Fa(o;,w) = a*fi(u;,ö)Dt; 

6t(u,Q) = Fa(<jj,ü)fß(u>,ü); 

dt{ü,ü) = |Fa(w,üi)| . 

Step 2: Updating ct+i{u},ü) and dt+i{u,ü) 

Compute (i + Z(+1Pt
_1Zt+i)     and find its Hermitian square root Gm; 

Compute: 

$t+i = Pt" Zt+iGt+i; 

pt+\ = P*1 - *t+i*2-i; 
1 rjn 

f4(w,ö) = #frfla^>Ä(a;Jw); 

f*(w,ö) = (*t+iZt+1) a*>I+1(w,ö); 

fz(w, ü) = (zf+1Pt-
T) a^Ä(w,ö); 

Update: 
gt+iO^ö) = ct(w,ö) + fj(w,ä))a^(a;)e-^ - fj(w,ü)f*(w,w); 

Ä+i(w,w) = ^(w,w)- || f$(w,w) ||2. ^ 
Step 3: Downdating Q+I(ü;,CD) and dt+i(u;,ü)) 

Compute f I - Zt_L+1Pt+1Zt_£+1J     and find its Hermitian square root Gt_L+1; 

Compute: 
u o-l = c 
3>t_Z+i = Pt+1Zt_£+1Gt_£+1; 

— —1 — — H 

pt-+i = Pt+i + **-L+i*t-i+i; 
f|(w,ü) = <it_L+1a^(u;,ü>); 

f$(w,ä>) = (^^L+iZt+i) a*iL(w,ö); 

fg(w,ö) = (zf_L+1Pt+1) a^(w,ö;) ; 

Downdate: 
Ww.ö) = {^i(w,ö) - fj(w,ü))ai(a;) + ff (w.öJf^Cw.ö)}^; 

dt+i(w,ö) = dt+i(u;,ü>)+ || f$(w,w) ||2. ^ 

Step 4: Computing aFB,t+i(u>ü) = il&%Y 
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Figure 3.1: Blurred IS AR images of a simulated moving MIG-25 airplane obtained by using 

(a) the FFT and (b) the windowed FFT. 
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Figure 3.2: Two examples out of the 481 time-varying ISAR images of a simulated moving 

MIG-25 airplane obtained by using (a)(b) 2-D windowed STFT, (c)(d) 2-D F-0 Capon, and 

(e)(f) 2-D F-B Capon. 
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4.    Time-Varying Complex Spectral Estimation with 
Application to ISAR Imaging 

4.1    Introduction 

Complex spectral estimation is very important for many applications including synthetic 

aperture radar (SAR) and inverse synthetic aperture radar (ISAR) imaging and feature ex- 

traction of stationary or moving targets [1]. Two widely used methods for this problem 

are the fast Fourier transform (FFT) approach and the Capon method [2]. Recently, a 

new approach, which is referred to as APES (Amplitude and Phase Estimation) was pro- 

posed in [3]. Both APES and Capon make use of adaptive FIR (finite impulse response) 

filters and belong to the class of matched filterbank spectral estimators. They can yield 

spectral estimates with much lower sidelobes and narrower spectral peaks than the FFT 

method. Further analysis results show that the Capon estimates are always biased down- 

ward whereas the APES estimates are unbiased (to within a second-order approximation) 

[4]. The theoretical results therein supplemented with the empirical observation that Capon 

usually underestimates the spectrum in samples of practical length while APES is nearly 

unbiased are believed to provide a compelling reason for preferring APES over Capon. 

In SAR/ISAR, the high range resolution can be achieved by transmitting signals with 

large bandwidth, whereas high resolution cross-range discrimination is obtained through the 

relative motion between the target and the radar to form a large synthetic aperture. As 

pointed out in [5], in SAR/ISAR, motion is the solution and the problem. This statement 

is especially true for ISAR imaging. In ISAR, the synthetic aperture is formed through the 

noncooperative motion of the targets. Most ISAR imaging algorithms are based on the range- 

Doppler processing, which implies that the Doppler shifts nearly remain constant during the 

coherent integration interval. Unfortunately, for maneuvering targets, this assumption is 

more often than not violated. This observation has motivated the use of various time-varying 

spectral analysis methods to ISAR imaging of maneuvering targets [6]. 

Short-Time Fourier Transform (STFT) is the simplest way for time-varying complex 

spectral analysis [7].  Major drawbacks associated with STFT include poor resolution and 
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accuracy and high sidelobes. The Wigner-Ville Distribution (WVD) method [7] is another 

popular time-frequency analysis approach which exhibits better resolution than STFT. How- 

ever, it suffers from the the cross-term interference problem that occurs when multiple signals 

exist together. Moreover, WVD, including its modifications [8, 9], belongs to the family of 

quadratic time-frequency representation methods and hence cannot be used for the complex 

spectral estimation problem considered herein. 

In this chapter, we attempt to apply the APES algorithm to sliding short-time data se- 

quences with maximal overlapping for the time-varying complex spectral analysis. The direct 

application of APES to each data sequence is computationally prohibitive. A computational- 

lly efficient recursive APES algorithm is developed in this chapter, which involves only FFT 

and simple matrix operations. It exhibits much better resolution than STFT. ISAR imaging 

examples show that it can successfully circumvent the imaging blurring problem caused by 

target maneuvering. 

The remainder of this chapter is organized as follows. In Section 4.2, we formulate 

the problem of interest. Efficient recursive implementations of one- and two-dimensional 

APES algorithms are given in Sections 4.3 and 4.4, respectively. In Section 4.5, we present 

several numerical and experimental examples showing both the imaging quality and the 

computational efficiency of the proposed implementations. Finally, Section 4.6 gives our 

conclusions. 

4.2    Problem Formulation 

Let {yt-n}n=o denote a one-dimensional (1-D) discrete-time data sequence within a slid- 

ing window of length N ending at time instant t. For a frequency u of interest, yt-n can be 

written as 

yt-n = <xt(u>)eKff-1-n'>u + wt-n{u),    n = 0,1, • • • ,N - 1, (4.1) 

where at(u>) denotes the complex amplitude of a sinusoid with frequency to at time instant t 

and wt-n(u)) denotes the unmodeled noise and interference at frequency to. The problem of 

interest herein is to estimate at(u) from {yt-n}n=o for a11 w of interest as t varies. 
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Let {znt-n, n = 0,1, • • •, iV - 1, n = 0,1, • • •, N - 1} denote a two-dimensional (2-D) 

discrete-time data sequence within a sliding window of size N xN ending at time instant t. 

(In ISAR, t is related to the position in cross-range and is referred to as slow time.) For a 

frequency pair (u,ü>) of interest, zn,t-n can be written as 

zn,t-fl = at(a;,ö)^nw+^-1-fl)fi>}+«;Blt-fl(w,ö),    n = 0,l,---,iV-l,n = 0,l,---,iV-l, 

(4.2) 

where at(u,ü) denotes the complex amplitude of a 2-D sinusoid with frequency (u,ü) at 

time instant t and tu„,t_fi(w,w) denotes the unmodeled noise and interference at frequency 

(w,w). The problem now is to obtain the estimate of at{u,ü) from the 2-D data sequence 

{zn t-n, n = 0,1, • • •, N-l, n = 0,1, • • •, N-l} for all (u, w) of interest as t varies. One of the 

applications of this topic is ISAR imaging of maneuvering targets or wide-angle ISAR imaging 

after standard motion compensation [10, 11]. In ISAR imaging applications, at(u,ü) would 

be proportional to the RCS of a scatterer of a moving target located at a range proportional 

to uj and cross-range proportional to Q at time instant t. 

STFT is the simplest method for estimating at{uj) from {yt-n}n=o or «t(w,ö) from 

{zn,t-n, n = 0,1, • • •, N -1, n = 0,1, • • •, N -1}, respectively. However, the STFT method is 

known to suffer from poor resolution and accuracy and high sidelobes. The Capon and APES 

algorithms are effective in reducing the sidelobes and improving the resolutions and APES 

outperforms Capon in the estimation accuracy. We can apply APES to the short-time data 

sequences for the purpose of time-varying complex spectral estimation. However, the direct 

application of APES to each data sequence is computationallly intensive. We must exploit 

the maximally overlapping features of the short-time data sequences to achieve significant 

computational savings. 

Two versions of the APES algorithms may be considered, i.e., the forward-only and 

forward-backward APES. It is commonly believed that the forward-backward algorithms 

have better performance than their forward-only versions, such as for Capon. However, 

theoretical analysis of the estimation performance and empirical evidence show that the 

forward-backward APES is not significantly better than the forward-only counterpart [4] 
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and the recursive version of the former is not significantly faster than the direct use of the 

former. Hence only the forward-only APES algorithm will be considered in this paper. We 

shall consider efficient recursive APES algorithms for the aforementioned 1-D and 2-D data 

sequences in the following sections. 

4.3    1-D Recursive APES 

4.3.1    Overview of the 1-D APES Estimator 

Let M denote the number of taps used by the 1-D APES adaptive FIR filter and 

r nT 

yt-i =    yt-i-M+i   Vt-i-M+2   • ■ ■   Vt-i ,    1 = 0,1,-..,L-1, (4.3) 

be the overlapping vectors of the 1-D data sequence, where L = N-M + l and (-)T denotes 

the transpose. Let 

1=0 

L-l 

g«M = Eywc"i(*"1"0w. (4-5) 
1=0 

and 

Qt{u) = Rt - gtMgf {v)/L, (4.6) 

where (-)H denotes the conjugate transpose. Then the APES estimate of at(u) has the form 

[3]: 

where 

aw(w) I     eJu     , . .    eJ(M-l)u (4.8) 

4.3.2    Efficient Initialization Method 

Now we consider how to efficiently calculate «APES,^) in a non-recursive way [12]. 

It can be used as the initialization method for the recursive algorithm that follows or as a 

separate time-varying APES estimator working at the batch mode. 

60 



According to the matrix inversion lemma, we have 

Qr'M = R.-' + fr'''i7)m-w"'v V6t v ;     f     -L-gfHRfgtH 

Let 

yt-L+i yt-L+2  • • • y* 

6t(w) = a^(cj)Rt
_1aM(w), 

ct(o;) = a^(a;)Rt-
1Ytal,(a;), 

and 

4(w) = ajYf R^YtaKw). 

Then we can then rewrite (4.7) as 

"APES,» = bM[L-ll)H\^)f 

The remaining problem is how to calculate bt(u), ct(u), and dt(u) in an efficient way. Let 

■Ct be the Hermitian square root of Rt, i. e., 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

RT1 = C.Cf. (4.15) 

Then &t(w), c^w), and rft(w) can be cauculated efficiently via FFT in the following way 

bt(u;) = \\Fa(u)\\\ (4.16) 

where 

and 

ct(u) = Fa(u)Fß(u>), 

dt{u>) = \\eß{w)f, 

F«M = a£(u;)Ct, 

F/,(w) = (cfYt)ai(o;). 

Note that both Fa(u) and Fß(u) can be computed via FFT. 

(4.17) 

(4.18) 

(4.19) 

(4.20) 
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Compared to those intuitive implementation schemes that do not use FFT to calculate the 

APES estimates, such as the one used in [4], the computational efficiency can be considerably 

improved by the above implementation approach. The larger the number of frequencies of 

interest in the complex spectrum, the larger the improvement. If we use the above scheme 

as a separate time-varying APES estimator, it is still computationally expensive. Below we 

describe how to calculate at+i(w) from &t(w) by taking advantage of the fact that the short- 

time data sequences at t and t+1 are maximally overlapped to achieve more computational 

savings. 

4.3.3    Recursive Implementation 

Note that by using (4.14), äAPES,n-i(w) can be updated from «APES.tM h? uPdating 

bt+i(u), ct+1{u), and dm(o;), respectively, from bt(w), ct(uj), and dt{u). 

Below we discuss how to update bt(u), ct(u), and dt(oS) as t varies. Let bt+i(u), Ct+i{w), 

and dt+i(w) be defined similarly to bt+i(w), cm(u;), and dt+1(u) in (4.11), (4.12), and (4.13), 

respectively, except that the data sequence {yt+i-i}^1 is replaced by {ym_/}f=0. We first 

consider how to update &t+i(w), ct+i{u), and dt+i{uj), respectively, from bt(u), Ct(w), and 

dt(u). We then update 6t+iH, ct+i(w), and dt+l{u) from bt+x(u)), öH-I(W), and 4nH, 

respectively. 

Let 

Yw = 

and 

Yt   yt+i (4.21) 

Rm = Y^Y^ = Rt + yt+iyS.1- (4-22) 

Then according to the matrix inversion lemma, R^i can be calculated from R^1 as follows: 

where 

rjt+1=KTlyt+u (4-24) 
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and 

<ßt+i = yf+i^yt+i = YwVt+v (4-25) 

Using (4.23) we obtain 

bt+1(u) = bt(uj) - (4.26) 
t+i 

f» [e~^ - F*(u,j\ 
c^iM = QH + fT^ , (4-27) 

and 

dt+iM = Mu,) +       x + 0t+i       + 2Re | x + ^e       j, (4.28) 

where Re(rc) denotes the real part of re, 

F» = aJMu^, (4.29) 

and 

^H = <1a£M> (4-30) 

with 

^«-i = Yf^i. (4-31) 

Note that (4.29) and (4.30) can be computed efficiently via FFT. 

Now consider how to update &t+i(w), Ct+i(w), and dt+i(u), respectively, from &t+i(w)> 

ct+i(w), and rff+i(o;). Since 

Rt+x = Rt+i - yt-L+iyf-L+i, (4-32) 

we have 

where 

and 

— — J-f 

■R-i   --R-i    I   Vt-L+lVt-L+l (4 33) 

fjt_L+1 = Rt-+\yt-L+i, (4-34) 

h-L+\ = yf-L+i&tliyt-L+i = yf-L+iVt-L+v (4-35) 
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Using (4.33), we obtain 

6t+i(w) = bt+i(w) + 1_ T_ 
L+l 

(4.36) 

and 

where 

and 

with 

-L+l 

F,(W) = a^(o;)f7t_L+1, (4.39) 

W = ^Vl+iM, (44°) 

J>W=Y?+iVt-L+v (4-41) 

Note again that (4.39) and (4.40) can be computed efficiently via FFT. 

From the above derivations, we note that «APES.t+i (w) can be uPdated from ÄAPES,t(a;) 

efficiently via simple matrix operations and FFT. Compared to the non-recursive implemen- 

tation scheme discussed in the previous subsection, the computationally demanding matrix 

inversion is avoided. The speed-up ratio of the recursive versus non-recursive implementa- 

tions depends on M, the number iVmax of frequencies of interest in the complex spectrum, 

and N. The larger the M, the larger the speed-up ratio. We will give some quantitative 

results on the speed-up ratio in Section 5. 
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4.4    2-D Recursive APES 

4.4.1    Overview of the 2-D APES Estimator 

Assume that APES uses an (M x M)-tap 2-D adaptive FIR filter. Let 

JLt-l 

zl,t-l-M+l zl,t-l-M+2 

zl+l,t-l-M+l zl+l,t~l-M+2 

zl,t-l 

zl+l,t-l (4.42) 

Zi+M-l,t-l-M+l     zl+M-l,t-l-M+2     * " "    zl+M-l,t-l 

be the overlapping matrices of the 2-D data sequence and 

zM_r = vec{zM_r}, (4.43) 

with Xfc (1 < k < K) being the fcth column of X. 

(4.44) 

(4.45) 

where vec{X} = 

Let 

T       T xl     x2 ^K 

M 
L-\h-\ 

•P* = A2 Z-/ 
zi,t-fz/,t-T> 

f=0 1=0 

and 

Qt(u,Q) = Pt ~ gt(w,w)gf (u,u)/(LL), (4.46) 

with ® denoting the Kronecker product [13], L = N - M+ 1, and L = N - M+ 1. Then 

the APES estimate of at(w, ü>) is given by [3] 

where 

«APES/".«) - ZLaJÄ(o;lö)Qr1(ü;,ö)aM>Ä(a;,ö) 

lAf,*(w. w) = aA?H ® aM(w). 

(4.47) 

(4.48) 
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4.4.2    Efficient Initialization Method 

Now we consider how to efficiently calculate «APES,*^'0) in a non-recursive way [12]. 

It can be used as the initialization method for the recursive algorithm that follows or as a 

separate time-varying APES estimator working at the batch mode. 

Let 

and 

By using 

*0,t-L+l     •••    zL-l,t-L+l     •••    Z0,t     •••    zL-l,t 

ct{u>,ü) = a^K^P^Zta^Kü), 

dt(u,Q) = aI)L(o;,ä;)Zf Pt-xZta*)£(o;,ä)). 

»-1 
n-if  -,   -p-1 , pr^, *)&*("> a)p« 
Qt   (W,W)-Pt   +£L_gH(Wjö)PriR(w>ö)' 

we can then rewrite (4.47) as 

&APES,t(w'0) 
ct(w,w) 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

(4.53) 

(4.54) 
bt(u),u>) [LL - d*(w,w)] + \ct(u,u)\2 

The remaining problem is how to calculate bt(u),ü), Ct(w,ö>), and d^w.ö) efficiently. Let Dt 

be the Hermitian square root of P^\ i-e., 

pr1 = DtDf. (4.55) 

Then 6t(w,w), Ct{w,Q), and dt(u;,ü>) can be computed via 2-D FFT in the following way 

&t(a,,üO = ||FaKd;)||2, (4-56) 

where 

ct{cj,oj) = Fa(u,u)Fß(u,u), 

dt(LJ,ü) =  \\Fß(uJ,ü)\\\ 

(4.57) 

(4.58) 

(4.59) 
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and 

Fß{u,ü) = (Df Zt) *lz(u>,ü>). (4.60) 

Note that FQ(o;,ö;) and Fß(w,ü) can be calculated efficiently via 2-D FFT. 

4.4.3    Recursive Implementation 

Similarly to the 1-D case, äApESt+1(o;,ü)) can als0 be uPdated from "APES,*^'0) 

by updating bt+1(u,ü), ct+1{u,ü), and dm(o;,ü>), respectively, from bt{uj,ü), Ct(u,co), and 

dt{u),ü). 

Let &H.I(W,ü>), ^+i(w,ö), and dt+i{w,ü) be denned similarly to bt+i{u,ü), Ct+1(u,ü), 

and dt+i(w,ö), in (4.50), (4.51), and (4.52), respectively, except that the data sequence 

{zlit+l_i,l = 0,1- ••,£- 1,1 = 0,1,---,L-1} is replaced by {z/)t+1_f,Z = 0,1-••,L,f = 

0,1, ••-,£}. We first consider how to update 6t+i(o;,ö)), Ct+i(o;,ö>), and Jt+i(o;,ö)) from 

bt(uj,ü), Ct(o;,ö)), and dt(o;,ö;), respectively. 

Let 

^t+i Z0,t+1     Zl,t+1     • • •     ZL-l,t+l 

Pt+i = P* + Zt+iZt+1, 

(4.61) 

(4.62) 

and     let     the     L   x    L     matrix     Gm     be     the     Hermitian    square     root     of 

(i + z^pr'Zm)-1,^-, 

Gt+1Gf+1 = (I + Z^Pr1^)'1 • (4-63) 

Then P^ can be updated from Pt
_1 as follows 

Pi^P«-1-*«-!*«.!. (4.64) 

where 

Let 

$m = Pf-
1Zt+1Gm. 

Zt+i — Zt   Zt+i 

(4.65) 

(4.66) 
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Using (4.64) we have 

bt+l(u,uj) = bt{u,Q) - ||f$(w,ö))||2, (4.67) 

ct+1(u,ü) = *(w,ö) +*J(w,ö) {Gjia*(o;)e-^ - f,(w,fi>)} , (4.68) 

and 

where 

and 

with 

dt+i(u),ü)   =   rft(a;,ä))+a^(a;)Z^1Pt+
1
1Zma2(a;)-||f*(a;,ä;)||2 + 

+2Re{fg{u,1ü)GJH1*l(u>)e-11»}, (4.69) 

£,(w>ö) = *S.1a^|Ä(w>ö)l (4.70) 

f*(w,ö) = *t+iaj,1(w,ä>), (4.71) 

*t+1 = *f+1Zt. (4.72) 

Note that (4.70) and (4.71) can be efficiently calculated via 2-D FFT and other terms 

appeared in Equations (4.67) through (4.69) can be calculated via 1-D FFT and simple 

matrix operations. 

Now consider updating bt+i(u),ü), ct+i(w,ö) and dt+i(u,ü) from &t+1(w,w), ct+i(w,w) 

and dt+i(üJ,ü)), respectively. From 

Pf+1 = Pt+1 - Zt_L+1Zf_L+v (4.73) 

we get 

pä=pä+*^i*£z+i. (474) 

where 

#,_£+! = PäZt_i+iG(_t+1) (4.75) 

with the L x L matrix Gt_£+1 being the Hermitian square root of (i - Z££+1P;+1Zt_£+1)    , 

Gt_i+1Gf_£+1 = (I - Z^P^Z^-H)"
1
 ■ (4-76) 
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Hence we have 
|2 bt+l(u,ü))=bt+1(uj,uj) + \\U(üJ,uj)\\  , (4.77) 

cm(a,,a)) = {pt+iCw.ö) - #(w,ö) [G^+1äl(w) -^(w.ö)]}^0, (4.78) 

and 

dt+i(ü;,ö)   =   Jt+i(o;,w)+aI(a;)Z^I+1Pt-+
1
1Zt_L+1a2(a;) + ||%(a;,ä;)||2 

-2Re{f#(u;,ä)Gf_I+1a2H}, (4.79) 

where 

and 

with 

f»(a;>fi>) = *JlI+1a^Ä(a;>(S), (4.80) 

f$(w,ö) = *t-£+iaJf|I+1(a;,ä>), (4.81) 

«t-Z+i = *f-L+1Zt+i- (4-82) 

Prom the above derivations, we note again that at+i(oJ,ü)) can be updated efficiently 

from at(üj,ü>) via FFT and simple matrix operations. 

4.5    Numerical and Experimental Examples 

Now we present several numerical and experimental examples to illustrate the perfor- 

mance of the proposed APES algorithm for 1-D and 2-D time-varying complex spectral 

analysis. In the following examples, we choose M and M of APES, respectively, to be the 

nearest integers of AT/2 and N/2. We compare the performance of APES with that of the 

STFT and the windowed STFT approaches. For the windowed STFT method, we use the 

Kaiser window with parameter 3. All 1-D and 2-D sequences are zero padded to 256 and 

256 x 256, respectively, before using FFT. 
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EXAMPLE 1. First consider a 1-D simulated example. The data sequence is generated 

as follows: 

yt = J2ePwfi®t + VH,    t = 0,1, •••,231, (4.83) 

where h{t) = -0.08 - ^ Hz, f2{t) = -0.02 + ^ Hz, /3(t) = -0.02 - ^ Hz, 

/4(t) = 0.08+4^03 Hz' and Wt is the zer°-mean wnite complex Gaussian noise with variance 

a2 = 0.01. 

Figures 4.1(a) through (d) show, respectively, the true spectrum of the signal as a function 

of time t and its estimates obtained by using 1-D STFT, 1-D widowed STFT, and 1-D APES 

with maximally overlapping short-time data sequences of length N = 32. It can be noted 

that the APES method gives much better spectral estimates than the STFT and windowed 

STFT methods. 

EXAMPLE 2. Now consider the ISAR imaging of a simulated fast rotating MIG-25 

aircraft. The 32 x 512 data matrix was provided to us by the Naval Research Laboratory. 

The two examples out of the 481 time-varying ISAR images obtained by using 2-D STFT, 

2-D windowed STFT, and 2-D APES with maximally overlapping short-time 32 x 32 data 

matrices are shown in Figures 4.2(a) (d), (b)(e), and (c)(f), respectively. Note again that 

APES outperforms the STFT and windowed STFT methods. 

EXAMPLE 3. Finally consider the ISAR imaging of a moving helicopter. The 64 x 512 

experimental data matrix was also provided to us by the Naval Research Laboratory. The 

one example out of the 449 time-varying ISAR images obtained by using 2-D STFT, 2- 

D windowed STFT, and 2-D APES with maximally overlapping short-time 64 x 64 data 

matrices are shown in Figures 4.3(a) through (c), respectively. The conclusions drawn from 

this experimental example are similar to those from the previous simulated examples. Note 

that there are horizontal blurred strips in the images, which are caused by the fast rotating 

rotors of the helicopter. 

The above three examples have demonstrated the estimation performance of the recursive 

APES algorithm. Now we consider the computational benefit of the proposed recursive 

APES algorithm.   Since both the non-recursive (referred to as the efficient initialization 
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discussed in Sections 4.3.2 and 4.4.2) and recursive APES algorithms proposed in this paper 

fully utilize the efficient FFT for the spectral estimation, they can save a lot of computations 

compared to those intuitive implementation schemes, such as the one used in [4]. The larger 

the number of frequencies of interest in the complex spectrum, the more significant the 

computational savings. Below we give some quantitative results for the speed-up ratios of 

the recursive versus non-recursive algorithms in different scenarioes obtained by running our 

MATLAB codes. 

For the 1-D case, we assume that N = 2M and the number of frequencies of interest 

in the complex spectrum is denoted by iVmax. For the 2-D case, we use Nmax and Nmax as 

the dimensions of the ISAR images and choose Nmax = Nmax, N = 2M, N = 2M, and 

M = M. The speed-up ratios are listed in Table 4.1. Note that the speed-up ratio goes 

up as M becomes larger. Also, the smaller the Nmax, the larger the speed-up ratio. This 

can be explained as follows. The entire computational cost of the non-recursive algorithm 

is mainly composed of two parts, the matrix inversion and the FFT operations. The high 

efficiency of FFT operations is shared by both the non-recursive and recursive algorithms 

and the resursive algorithm is mainly used to reduce the computational overhead of the 

matrix inversion. When M becomes larger or Nmax gets smaller, the computational cost of 

matrix inversion becomes the dominant part and hence the speed-up ratio goes up. 

Finally, we remark that like many other adaptive least-square filtering algorithms dis- 

cussed in [14], the roundoff errors due to the use of finite-precision arithmetic may pose a 

potential problem of numerical instability after a long recursive time interval. In this case, 

a periodic reinitialization procedure can be used to cure this problem. 

4.6    Conclusions 

We have presented a computationally efficient way of implementing APES recursively for 

time-varying spectral analysis, which involves only FFT and simple matrix operations and 

great computational savings can be achieved by fully exploiting the maximally overlapped 

short-time data sequences. Both numerical and experimental examples have shown that the 
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recursive APES method can perform much better than the short-time FFT methods for 

ISAR iamging and feature extraction of maneuvering targets. 
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(a) (b) 

(c) (d) 

Figure 4.1: Comparison of (a) the true spectrum as a function of time with its estimates ob- 

tained by using (b) 1-D STFT, (c) 1-D windowed STFT, and (d) 1-D APES with maximally 

overlapping short-time data sequences of length N = 32. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 4.2: Two examples out of the 481 SAR images of a simulated moving MIG-25 airplane 

obtained by using (a)(d) 2-D STFT, (b)(e) 2-D windowed STFT, and (c)(f) 2-D APES with 

maximally overlapping short-time 32 x 32 data matrices. 
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(a) (b) (c) 

Figure 4.3: One example out of the 449 SAR images of a moving helicopter obtained by using 

(a) 2-D STFT, (b) 2-D windowed STFT, and (c) 2-D APES with maximally overlapping 

short-time 64 x 64 data matrices. 

iVmax = 32 Nmax = 64 JVmax = 128 Nmax = 256 

M = 16 22 17 13 10 

M = 32 47 39 33 

M = 64 99 88 

M = 128 204 

(a) 

iVmax = 32 iVmax = 64 AUc = 128 Nmax = 256 

Af = 16 20 16 11 8 

M = 32 43 39 29 

(b) 

Table 4.1: Speed-up ratios of recursive versus non-recursive APES algorithms for (a) the 1-D 

case and (b) the 2-D case. 
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5.    A Semi-Parametric Spectral Estimation Approach to SAR 
Target Feature Extraction and Image Formation 

5.1    Introduction 

Synthetic aperture radar (SAR) image formation and target feature extraction play an 

important role in many applications including the battlefield awareness [1]. The conventional 

Fourier transform based methods are known to be computationally efficient and robust, but 

suffer from poor resolution, poor accuracy, and high sidelobes. Many modern spectral esti- 

mation methods have been devised and applied to target feature extraction and SAR image 

formation to improve resolution and accuracy, while reducing sidelobes. In [2, 3], many para- 

metric and nonparametric spectral estimation methods are compared and discussed for their 

advantages and disadvantages for SAR image formation. The nonparametric methods that 

have been used for SAR image formation and target feature extraction include, for example, 

the reduced-rank variations of the Capon method [4, 5, 6], the adaptive sidelobe reduction 

approaches [7], and the matched-filter bank based complex spectral estimation methods [8] 

including the Capon [9] and APES (Amplitude and Phase Estimation) [10] methods. The 

parametric methods that have been considered include, for example, autoregressive (AR) 

model based methods [11, 12], eigendecomposition based methods [4, 5, 6, 13] including 

MUSIC [14] and ESPRIT [15], and nonlinear least squares (NLS) fitting based methods 

[16, 17]. In general, parametric algorithms outperform their nonparametric counterparts in 

resolution and accuracy but are more sensitive to data modeling errors. 

Most of the parametric SAR target feature extraction algorithms are based on the two- 

dimensional (2-D) complex sinusoidal data model with constant amplitude and phase in 

both range and cross-range by assuming that the target consists of several trihedral corner 

reflectors (ideal point scatterers). This assumption is not always valid in practice. For 

example, for many man-made targets, especially vehicles and buildings, much of the returned 

energy is primarily caused by the dihedral, in addition to the trihedral, corner reflectors of 

the target [18]. In general, the constant amplitude and phase complex sinusoidal data model 

is basically valid in range. However, it is more difficult to establish a good parametric data 
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model in cross-range. An ideal trihedral corner reflector can be modeled as a complex sinusoid 

with a constant amplitude and phase in cross-range. An ideal dihedral corner reflector can 

be approximately modeled in cross-range as a complex sinusoid with amplitude described 

by a sine (sm(x)/x) function and a constant phase. In [17], a mixed data model using 

both constants and sine functions in cross-range was considered and a parametric algorithm, 

referred to as the RELAX-NLS (RELAXation based NLS) algorithm, was presented for 

the feature extraction of targets consisting of both trihedral and dihedral corner reflectors. 

Due to the sophisticated data models used, RELAX-NLS is computationally demanding. In 

addition, like many other parametric spectral estimation algorithms, RELAX-NLS is not as 

robust as nonparametric approaches against data modeling errors. 

In this chapter, instead of using the aforementioned approximate data models in cross- 

range, we use a more flexible data model, which models each target scatterer as a 2-D 

complex sinusoid with arbitrary amplitude and constant phase in cross-range and with con- 

stant amplitude and phase in range. Due to the arbitrary amplitude assumed in cross-range, 

the data model is essentially semi-parametric and the algorithm based on such a flexible 

data model is more robust against data modeling errors than parametric methods. A new 

algorithm, referred to as the SPAR (Semi-PARametric) algorithm, is presented for the SAR 

target feature extraction and high resolution image formation. By taking advantage of both 

parametric and nonparametric spectral estimation methods, SPAR exhibits better estimation 

and resolution performance over nonparametric approaches and is more robust against data 

modeling errors than parametric methods. By attempting to deal with one corner reflector 

at a time, SPAR can be used to effectively mitigate the artifact problem encountered in the 

high resolution SAR image formation due to the flexible data model. Another advantage 

of SPAR is that it can be used to obtain the initial conditions needed by other parametric 

algorithms, such as RELAX-NLS, to reduce the total amount of computations required to 

extract target features. 

The remainder of this chapter is organized as follows. Section 5.2 formulates the problem 

of interest. Section 5.3 discusses the possible ambiguity problems of the flexible data model 

and their effects on SAR target feature extraction and high resolution image formation. In 
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Section 5.4, the SPAR algorithm is presented. A modified RELAX-NLS algorithm is pre- 

sented in Section 5.5. Section 5.6 illustrates the performance of the proposed algorithm with 

both numerical and experimental examples. Finally, Section 5.7 contains our conclusions. 

5.2    Problem Formulation 

It is necessary to establish a proper data model for target scatterers to obtain super reso- 

lution SAR images of targets of interest. However, as pointed out in the previous section, it 

is difficult to establish a good parametric model in cross-range for target scatterers. Instead, 

we model herein the received signal reflected from a target scatterer as: 

s(n,n)=x(n)eJ'V2^n+/"),    n = 0,1, • • -,N - 1,    n = 0,1,- • -,N - 1,        (5.1) 

where N and N denote the dimensions of the available data samples in range and cross-range, 

respectively; x(n) is an arbitrary unknown real-valued function of n determined by the radar 

cross section (RCS) of the scatterer; </> is a constant phase; finally, {/, /} is the frequency 

pair proportional to the 2-D location (range and cross-range) of the scatterer. This data 

model is essentially semi-parametric since little parameterization is done in cross-range. 

Assume that a target consists of K scatterers. Then the target data model in the presence 

of noise has the form: 

y(n, n) = J2 zfc(n)e^V2*(/*n+/fcfi) + e(n, n),    n = 0,1, • • •, N - 1,    n = 0,1, • • ■, N - 1, 
fc=1 (5.2) 

where {xk(n)}S^o denotes the real-valued amplitude function of n for the fcth scatterer; <j)k 

and {fk, fk}, respectively, are the constant phase and the frequency pair of the fcth scatterer; 

finally, {e(n,n)} denotes the unknown 2-D noise and clutter sequence. 

Since SAR images are often used in SAR applications [19, 20, 21], our problem of interest 

herein is to estimate the target parameters {(j)k,{xk(n)}n=oJkJk}k=i from the 2"D data 

sequence {y(n,n)} and then to form high resolution SAR images with the estimated target 

parameters. 
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5.3    Effects of the Semi-Parametric Data Model on SAR Image Formation 

Target feature extraction methods devised based on the data model in (5.2) are robust 

against data modeling errors due to the model flexibility. However, there are ambiguity 

problems associated with the semi-parametric data model. In this section, we first analyze 

the possible data model ambiguities and then illustrate their effects on SAR target feature 

extraction and image formation. The discussions below will motivate the introduction of the 

SPAR algorithm, which will be presented in detail in Section 5.4. 

5.3.1    Model Ambiguities 

Due to the flexibility of the data model in (5.2), there are various types of ambiguities 

that may impact the feature extraction of each scatterer. Below we list several types of the 

ambiguities inherent in the data model. 

Type 1: Single scatterer 

From (5.1), we note that ambiguity exists between <j) and x{n) since 

x{n)(J+ = -x{n)eji<l>+n) = x(n)e^, (5.3) 

where x(n) = -x{n) and </> = (f> + it. Ambiguity also exists between / and x(n) since 

x{n)e^n = (-l)flx(n)eJ'2*(/"-°-8)n = x(fi)e^h, (5.4) 

where x(n) = (-l)nx{n) and / = / - 0.5. The above two types of ambiguities cannot be 

resolved. 

Type 2: Two identical scatterers located in the same range 

Let fa and fb, respectively, denote the cross-range locations of two identical scatterers and 

let (f)a and <f>b, respectively, denote their phases. Then 

x(n) [eM-WM + e^+j2"f~»n)} = 2x(n) cos n(fa - fb)n + ^^  e^e^+/^, 

(5.5) 

which indicates that two identical corner reflectors (trihedrals or dihedrals) located in the 

same range but different cross-range positions fa and fb, respectively, can be modeled by (5.1) 
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as one "scatterer" located at (/a + /&)/2 in cross-range with x(n) modulated by 2cos[7r(/a - 

fb)n+((f)a - fa)/2]. Thus the data model in (5.1) cannot be used to describe each of the two 

corner reflectors in this case. 

Type 3: Two different scatterers located in the same range 

Assume that two different corner reflectors with parameters {fa,{xi(n)}n~0 ,/,/i}-=1 are 

located in the same range. Then the target model in the absence of noise has the form: 

r(n,n) = Y,xi(n)ej't>iej2nVn+f~in\    n = 0,1, • • • ,N - 1,    n = 0,1, • • • ,N - 1.        (5.6) 
i=l 

With straightforward calculations, we can rewrite (5.6) as 

r{n, n) = E xi(n)e^iej2^f'in+'f<fl\ (5.7) 
i=i 

where fa = fa + TT/
2
 with fa denoting an arbitrary phase, /i = /2 = /, /i = /2 = / with / 

denoting an arbitrary cross-range location, 

2 

Xi(n) = £Xi{n) cos[27r(/i - f)n + {fa - fa)], (5.8) 
i=l 

and 

x2(n) = £Xi{n) sm[2ir(fi - ~f)n + (fa - fa)]. (5.9) 

Note    from    (5.7)    that    {fa, {xi(n)}§=0
}', fi,~fi}l=i    are    the    ambiguous    features    of 

{faAximS^JJiyiv 
Type 4: Multiple scatterers located in the same range 

When more than two scatterers are located in the same range, the data model in the absence 

of noise can still be written as (5.7) except that 

L 

i=i 
Xl(n) = Yixi{n)cos[2ir{fi - f)n+{fa - fa)], (5.10) 

and 

x2(n) = y£ixi{n)sm[2n{fi - J)n+(fa - fa)], (5.11) 
i=l 
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where L > 2 denotes the number of scatterers located in the same range. Thus the L 

scatterers located in the same range are considered as two "scatterers" when using the data 

model in (5.2). 

Before we discuss the impact of the model ambiguities on SAR image formation, we first 

describe how the image formation is done if we have the estimated model parameters. 

5.3.2    Image Formation 

Assume for now that we have extracted the target features based on any of the ambiguous 

data models. For notational convenience, we will use the notation used in (5.2). Since the 

target data model in range is a sum of several complex sinusoids with constant amplitudes 

and phases, we can use the estimated sinusoidal parameters to simulate a data matrix with 

a larger dimension in range and then use FFT to demonstrate the super resolution property 

of the feature extraction algorithm we shall present. Yet we cannot extrapolate the estimate 

{xk(n)} of {xk(n)} since it is assumed to be an arbitrary unknown real-valued function of 

n and hence FFT cannot be used to obtain SAR images with enhanced resolution in cross- 

range. Instead, we use 1-D APES [8, 10, 22] in cross-range when forming SAR images. 

APES is a nonparametric complex spectral estimator making use of adaptive finite impulse 

response (FIR) filterbanks to suppress interference and noise. APES belongs to the class 

of matched filterbank spectral estimators and provides lower sidelobes, narrower spectral 

peaks, and more accurate spectral estimates than FFT. 

Let {ss(n, n)} denote the simulated data sequence with a larger dimension in range based 

on the estimated target features {4>k,{xk{n)}n=o,fk,fk}k=i of {fa, {xk(n)}n=o ,/fc./fc}fc=i 

where K denotes the estimate of the scatterer number K. Then 

K 

I 
fc=i 

ss(n, n) = £ &k{n)e^e^hn+^n\    n = 0,1, • • •, (N - 1,    n = 0,1, • • •, N - 1,    (5.12) 

where ( denotes an extrapolation factor (( > 1) and is a parameter of user choice. Note 

that the super resolution property of the so-formed SAR images is determined by the feature 

extraction algorithm and C > 1 is only used to demonstrate the super resolution property of 
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the target feature extraction algorithm. The estimated noise and clutter data matrix is 

e{n,n) = y(n,n)-ss(n,n),    n = 0,1, • • • ,JV - 1,    n = 0,1, • • • ,N - 1, (5.13) 

which is also important in many SAR applications since, for example, important target infor- 

mation such as the target shadow information is contained in e(n, n). We cannot extrapolate 

e(n, n) in either range or cross-range since no parametric data model is available for e(n, n). 

To obtain SAR images with low sidelobes in range via 1-D FFT, we apply 1-D windows 

to ss(n,n) and e(n,n) in range. We obtain a new (C-/V) x N data matrix Y as follows: 

y(n,n) = ss(n,n)ws{n)+(e(n,h)we(n),    n = 0,1, • ■ •,N - 1,    n = 0,1,- • -,N - 1, 

y(n,n) = ss{n,n)ws(n),    n = N,N + 1,- • -,(N - 1,    n = 0,1, • • -,N - 1, 
(5.14) 

where y{n,n) denotes the (n,n)th element of Y and ws(n) and we(n) are 1-D windows of 

lengths (N and N, respectively, satisfying 

CJV-i 
2 ™s(n) = (N, (5.15) 
n=0 

and 

X; WeW = N. (5.16) 
n=0 

The window functions ws(n) and we(n) are selected according to the desired sidelobe levels. 

Note that scaling e(n, n) in y{n, n) by a factor of C is necessary since the range dimension 

of ss(n,n) is C times of that of e(n,n). The steps needed for SAR image formation are as 

follows: 

Step (1): Form Y from y(n,n) by using (5.12), (5.13), and (5.14). 

Step (2): Apply the normalized 1-D FFT to each column of Y to obtain an intermediate 

matrix and then apply 1-D APES to each row of the intermediate matrix. (See [22] for the 

efficient implementation of APES.) Note that the normalized 1-D FFT has the form 

^E^.")^"'    n = 0,l,---,iV-l. (5.17) 
C-*»    n=0 
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5.3.3    Model Ambiguity Effects on SAR Image Formation 

All of the aforementioned types of ambiguities will have no effect on the SAR image 

formation if no parameter estimation errors exist since the scatterers will be perfectly recon- 

structed by using any of the possible ambiguous data models. For example, when there are 

two identical scatterers located in the same range, the data model in (5.2) can still be used 

for SAR image formation since the two scatterers are now described as one "scatterer" with 

(5.5), which still fits the data model of (5.2) with K = 1. Hence the original SAR image can 

still be reconstructed by using the parameters of the one "scatterer" described by the right 

side of (5.5). 

In the presence of parameter estimation errors due to the presence of noise and clutter, 

however, Types 1 and 2 ambiguities discussed in Section 5.3.1 will have little effect on SAR 

image formation, whereas Types 3 and 4 ambiguities can result in artifact problems for the 

high resolution SAR image formation. Generally speaking, the higher the signal-to-noise 

ratio (SNR), the more accurate the parameter estimates and hence the less significant the 

artifact problem. The effect of Type 3 ambiguity on SAR image formation in the presence of 

estimation errors is demonstrated by comparing Figures 5.1 and 5.2. (The effects are similar 

for Type 4 ambiguity.) Figure 5.1 is obtained by assuming no parameter estimation errors. 

Figure 5.1(a) shows the FFT image of a target consisting of two dihedrals of different lengths 

located in the same range. We use 

xk(n) = aksmc[bkn(n - rk)},    k = 1,2,    n = 0,l,---31, (5.18) 

to simulate the dihedrals, where ak and bk, respectively, are proportional to the maximal 

RCS and the length of the kth dihedral corner reflector and rk denotes the peak location of 

the data sequence and is determined by the orientation of the ifcth dihedral. The size of the 

simulated data matrix is 32 x 32 (i.e., N = N = 32). The parameters for the two dihedrals 

are given in Table 5.1. An ambiguous set of target features can be obtained by choosing 

fr = f2 = 0.1, ~f1 = J2 = / = 0.2, fa = 0, and fc = TT/2 in (5.8) and (5.9). The windowed 

FFT SAR images of the two "scatterers" are shown in Figures 5.1(b) and (c), respectively, 

which differ considerably from the two dihedral scatterers in Figure 5.1(a). The combined 
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k «it <j>k fk Ik bk Tfc 

k=l 9.6 0 0.1 -0.3 0.3 18.6 

k=2 6.4 0 0.1 0.1 0.2 18.6 

Table 5.1: True parameters of the two dihedrals used in Figures 5.1 and 5.2. 

SAR image of the two "scatterers" is given in Figure 5.1(d), which is exactly the same as 

the true image shown in Figure 5.1(a). However, due to the presence of noise and clutter, 

parameter estimation errors are inevitable. The errors in range are the main cause of the 

artifact problem in the high resolution SAR image formation. In Figure 5.2, we assume 

that all parameters are accurate except that f2 = f2 + 0.01 = 0.11. Figures 5.2(a) and 

(b), respectively, show the windowed FFT images of the two aforementioned "scatterers" 

in the presence of estimation errors and Figure 5.2(c) shows the combined SAR image. By 

comparing Figures 5.1(a) and 5.2(c), we note that an extra line (artifact) shows up next to 

the short dihedral. The reason is that due to the estimation errors, fx # /2. Hence the 

two "scatterers" in Figures 5.2(a) and (b) are not exactly in the same range and cannot be 

"combined" perfectly to obtain the two dihedral lines in Figure 5.1(a). This problem becomes 

even worse when SAR images are formed via data extrapolation in range. The larger the 

extrapolation factor C, the more significant the artifact problem since the difference between 

fx and /2 is exaggerated C, times. Figures 5.2(d) shows the SAR image obtained with C = 2. 

By comparing Figures 5.2(d) and (c) (here C = 1 and hence no data extrapolation), we note 

that the artifact next to the short dihedral becomes more significant. Severe artifacts may 

exist at low SNR since the accuracy of the parameter estimates is poor. The SPAR algorithm 

we present below attempts to avoid this problem by using windows to isolate the multiple 

scatterers located in the same range. 
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5.4    The SPAR Algorithm 

Figure 5.3 shows the block diagram for the SPAR algorithm, which can be summarized 

by the following two steps: 

Step 1: Scatterer Isolation based Target Feature Extraction: See Section 5.4.1 below for 

details. 

Step 2: SAR Image Formation: See Section 5.3.2 for details, where the estimated target 

features are obtained by using Step 1. 

5.4.1    Target Feature Extraction 

The basic idea behind SPAR is to extract the features of each scatterer separately. Before 

we present the target feature extraction algorithm, we first summarize the steps needed 

for the feature extraction of a single scatterer as a preparation. The generalized Akaike 

information criterion is also introduced to estimate K, the number of scatterers, at the end 

of this subsection. 

Feature Extraction of a Single Scatterer 

The data model of a single scatterer in the presence of noise has the form: 

ys(n,n) = s(n,n) + es(n,n),    n = 0,1, • • • ,N - 1,    n = 0,1, • • • ,N - 1, (5.19) 

where s(n,n) is given in (5.1) and {es(n,n)} denotes the unknown 2-D noise and clutter 

sequence. Let 

WJV(/) = 

and 

I     eJ2TTf     ...     eJ2*f(N-l) 
T 

T 

(5.20) 

(5.21) I     eJ"2*7     ...     eJ27r/(Är-l) 

where (-)T denotes the transpose. Let D(/) denote the following diagonal matrix: 

D(/)=diag{l,   e*2*f,   •••,   e*'2***-1) } ■ (5-22) 
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Define 
r _        lT 

x=    x(0)   x{l)   •••   x(N-l)\   ■ (5-23) 

Let Ys be an N x N matrix with its (n,n)th element being ys(n,n). Then we can rewrite 

(5.19) as: 

Y, = e"G(x,/,/)+E,> (5.24) 

where 

G(x,/,/)=o;Ar(/)xTD(/), (5.25) 

and Es denotes an iV x N matrix with es(n,n) being its (n,n)th element.   Let ys., n = 

0,1, • • •, N - 1, denote the nth column of Ys and define 

y,(/) = Y^(/), (5.26) 

where (•)* denotes the complex conjugate. Then the NLS estimates |x, <j>, f, f\ of |x, (j>, f, /] 

are (see Appendix A for the detailed derivations): 

x   =   ^Re[c-^y.(/)0^(/)], (5.27) 

where Re(x) denotes the real part of x and 0 denotes the Hadamard matrix product or the 

element-wise product of two matrices; 

' N-l 

# = 5-ig E [yl«*N(f)\V'M2» , (5.28) 
n=0 

where arg(rc) denotes the argument of a complex variable x; finally, 

{/,/} = arg max C4(/,/), (5.29) 

where 

JV-l 

c4(/,/) = EÄ^(/) 
71=0 

+ 
N-l 

E 
n=0 
E[yf^^(/)]2^'27r(2/)f (5.30) 

The steps needed to obtain the NLS estimates of a single scatterer are summarized as follows: 

Step (I): Use (5.26) to obtain y,(/) and obtain the cost function C4(f, f) according to 

(5.30). Determine {/, /} by maximizing C4(f, f) using the method given in Appendix A. 
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Step (II): Calculate <j> according to (5.28) with {/,/} replaced by {/,/} obtained in 

Step (I). 

Step (III): Calculate x via (5.27) with {(ßJJ} replaced by {0,/,/} determined in 

Steps (I) and (II), respectively. 

Feature Extraction of Multiple Scatterers 

When a target consists of multiple scatterers, we can obtain the NLS estimates of the 

target features based on (5.2) by using a relaxation-based optimization approach. Let 

-iT 

Xfc a*(0)   xk(l)   •••   xk{N-l) (5.31) 

and let Y and E be N x N matrices with their (n, n)th elements being y(n, n) and e(n, n), 

respectively. Then we can rewrite (5.2) as 

Y = £>^Gfc(xfc,/fc,/fe)+E, (5.32) 
ik=l 

where Gfc(xfc, fk, fk) has the same form as the G(x, /, /) in (5.25) except that x, /, and / are 

replaced by xfc, /*, and fk, respectively. Let yfl) n = 0,1, • • •, N-1, be the nth column of Y. 

Then the estimates {&,**, A,/Jjti of {4>k,*k, fkJk}JLi can be obtained by minimizing 

the following NLS cost function: 

C, ({fc.Xfc,/*,£}£*) =  Y- E^Gfe(xfe)/fc,/fc) (5.33) 

where || • ||F denotes the Frobenius norm [23]. The minimization of C5 ({0fe, xfc, fk, fk}k=i) in 

(5.33) is a very complicated optimization problem. The proposed SPAR algorithm performs 

a complete relaxation-based search by letting only the parameters of one scatterer vary at a 

time while freezing the parameter values of all other scatterers (K - 1 in number) at their 

most recently determined values for each assumed number of scatterers K. Let 

K 

Yfc=Y-   £   ^GiixiJiJi), 
i=l,ij£k 

(5.34) 
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and assume that {$u*i,hii)titfk are given. Then the NLS estimates {fa,xk, fkJk}k=i 

of {(f>k, xfe, fk, A}f=i can be obtained by minimizing C6(<f)k, xfc, fk, fk), where 

2 
Ce(<f>k,xk,fk,fk) = \\Yk -^GfcCxfc,/*,/*) J?> (5.35) 

and using the method presented in the previous subsection for the feature extraction of 

a single scatterer. However, when multiple scatterers are located in the same range, the 

minimization of C6((f)k,-xk,fk, fk) has numerous ambiguous solutions that may lead to the 

artifact problem in the high resolution SAR image formation. 

SPAR attempts to avoid the ambiguity problem by isolating out the most dominant 

scatterer in Yfc by using a 2-D rectangular window, which is determined from and applied 

to the 2-D FFT of Yfc. The isolation process has the following steps: 

Step (i): Obtain Vfc, the 2-D FFT of Yfe, without zero padding. 

Step (ii): Determine the 2-D window w(n, n) from Vfc. We first locate the peak location 

(n+, n+) of the magnitude of Vfc. We then fix n to n+ and search for the interval nx < n+ < 

n2 so that the magnitude of Vfc is above a certain threshold, say Th within the interval. 

Similarly, we can fix n to n+ and search for the interval nx < n+ < n2. Then the N x N 

rectangular window w(n, n) has unit value for nx < n < n2 and nx < n < n2 and zero value 

elsewhere. The threshold Tt we use in our numerical and experimental examples is 10% of 

the peak value of the magnitude of Vfe. 

Step (iii): Determine Yfe by applying 2-D inverse FFT (IFFT) to Vfc 0 W, where the 

(n, n)th element of W is w(n, n). 

Instead of minimizing C6{(ßk, xfc, fk, fk), we now minimize 

C7(0fc, xfc, fk, fk) == \\Yk - e^Gfc(xfc, fk, fk)(F , (5.36) 

where Yk is used to replace Yfc in C6{(/>k, xfc, fk, A), by using the method presented in Section 

5.4.1. 

With the above preparations, now we provide the steps of the scatterer isolation and 

relaxation based optimization algorithm, which are the substeps of Step 1 of SPAR. 
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Step I: Assume K = 1. Calculate Y from Y by using the isolation process. Obtain 

A,Xfc,/fc,/fc}jb=ifrom Y. 

Step II: Assume K = 2. Compute Y2 with (5.34) by using {fa,Xk,fk,fk}k=i ob- 

tained in Step I. Calculate Y2 from Y2. Obtain {fa,xkJk,fk}k=2 from Y2. Next compute 

Yi with (5.34) by using {4,xfc, fk, /Jfc=2, calculate Yi from Yu and then redetermine 

{4,xfc,/fc,/fc}fc=ifrom Yi. 

Iterate the previous two substeps until "practical convergence" is achieved (to be dis- 

cussed later on). 

Step III: Assume K = 3. Compute Y3 with (5.34) by using {<^,xfc, fk, fk}
2

k=l obtained 

in Step II. Calculate Y3 from Y3. Obtain {&,£*, A,/fc}*=3 from Y3. Next, compute 

Yi with (5.34) by using {4,xfc,/fc,/fc}L2> calculate Yi from Yu and then redetermine 

{0fe,Xfc,A,/fe}fc=i from Yi. Then compute Y2 with (5.34) by using {fa,Xk,fk,fk}k=iji, 

calculate Y2 from Y2, and then redetermine {&.,xfc, fk, fk}k=2 from Y2. 

Iterate the previous three substeps until "practical convergence". 

Remaining Steps: Continue until K is equal to the desired or estimated number of 

scatterers. 

The "practical convergence" in the iterations of the above relaxation-based optimiza- 

tion algorithm may be determined by checking the relative change e of the cost function 

C5 ({<£*, xfc,/fc,/fc}f=1) in (5.33) between two consecutive iterations. Our numerical and 

experimental examples show that the algorithm usually converges in a few iterations. 

We can determine K, the number of scatterers in (5.2), by extending the generalized 

Akaike information criterion (see [24] for details). By assuming that the noise is white, the 

estimate K of K is determined as an integer that minimizes the following cost function: 

GAIC* = NN\n    £ £ \ek{n,n)\2   + 7ln[ln(iViV)]^(iV + 3) + 1], (5.37) 
\n=0 n=0 / 

where 7 is a constant of user choice and is usually determined by empirical experience, 

K 

E 
fc=i 

e^(n,n)=y(n,n)-E^He^eJ'27r(An+/fcß)>    n = 0,1,-■ ■ ,N - 1,    n = 0,1, • • ■, N - 1, 

(5.38) 
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and K(N + 3) +1 is the total number of real-valued unknown parameters (of which K(N+3) 

is for the scatterers and 1 is for the white noise variance). 

Note that the NLS estimates of {</>fe,xfe, fkl fk}k=1 can also be obtained from {Yfc}f=1 

determined in (5.34), rather than {Y*}^, via the above relaxation-based optimization 

algorithm. We refer to this approach as the hybrid method. When multiple scatterers are 

located in the same range, the hybrid method may be computationally more efficient than 

SPAR since the hybrid method does not isolate the scatterers so that multiple scatterers 

located in the same range can be more efficiently described as at most two "scatterers". 

However, the hybrid SAR images may suffer from more severe artifact problem than SPAR, 

especially at low SNR. When no multiple scatterers are located in the same range, SPAR 

and the hybrid method perform similarly. 

5.5    Modified RELAX-NLS Algorithm 

RELAX-NLS [17] is a parametric approach for the feature extraction of targets consist- 

ing of both trihedrals and dihedrals. It is based on a mixed data model in which x(n) is 

modeled as a real-valued constant for a trihedral or a sine function of n for a dihedral. Like 

SPAR, RELAX-NLS extracts the target features by minimizing an NLS cost function via 

a relaxation-based approach. However, RELAX-NLS is computationally expensive since a 

4-D search over the parameter space is required for dihedral corner reflectors. Since SPAR is 

more robust and computationally more efficient than RELAX-NLS, the former can be used 

to provide the initial conditions needed by the latter. 

Let {(ßk,x-k,fk,h}k=i denote the parameter estimates obtained via SPAR according to 

the data model in (5.2), where K is the estimated number of scatterers obtained via the afore- 

mentioned generalized Akaike information criterion. The SPAR estimates {</>fc, xfc, fk, fk\k=i 

cannot be used directly as initial conditions for RELAX-NLS. The initial conditions are 

obtained by applying the first step of RELAX-NLS [17] to each Ufc,    k = 1,2, • • •, K, where 

Ufe = Y-   £)   ^GifrJuh)'    k = 1,2, ■--,&. (5.39) 
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Once we have the initial conditions, we can use the last step of RELAX-NLS [17] to obtain 

the dihedral and trihedral parameter estimates, which are then used for SAR image formation 

[25]. We refer to this approach as the modified RELAX-NLS algorithm. 

5.6    Numerical and Experimental Results 

We demonstrate and compare the SAR image formation performances of SPAR and the 

modified RELAX-NLS with both numerical and experimental examples. The algorithms are 

also compared with the hybrid method and RELAX-NLS. In the following examples, the di- 

mensions of the original SAR phase history data matrix are N = N = 32 and the generalized 

Akaike information criterion with 7 = 5.5 is used to determine K for the relaxation-based 

feature extraction algorithms of SPAR and the hybrid method. The threshold 7} used in the 

isolation process of SPAR is 10% of the peak value. The maximization of C4(/, /) in (5.30) 

is done in two steps. First, initial frequency estimates / and / are obtained via 1-D FFT 

with zero-padding to a total length of 128 in range and to a total length of 64 in cross-range. 

Next, these initial estimates are refined by using the FMIN function in MATLAB alternately, 

i.e., by updating / while fixing / at its most recently determined value and vice versa, un- 

til "practical convergence", which is determined by checking the relative change of the cost 

function C4(/, /). We have used 10-3 to determine the convergence of this fine search as well 

as the relaxation-based algorithm. The extrapolation factor C = 8 is used in range for SPAR 

and the hybrid method and in both range and cross-range for both RELAX-NLS and the 

modified RELAX-NLS algorithm. Both 1-D and 2-D Kaiser windows with shape parameter 

ß = 6 are used whenever needed. (We will be happy to provide the MATLAB codes to the 

interested readers.) 

First consider a numerical example with high SNR. The SAR phase history data matrix 

is simulated by assuming that there are four trihedrals and three dihedrals in the presence of 

zero-mean white complex Gaussian noise with variance o2
n = 0.6. The amplitude functions 

for the four trihedrals are generated as follows: 

xk(n) = l,    fc = l,2,3,    n = 0,l,---,iV-l, (5.40) 
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and 

z4(n) = 2,    n = 0,l,---,N-l. (5.41) 

The amplitude functions for the three dihedrals are 

x5(n) = 9.6smc[0.37r(n - 18.6)],    n = 0,1, • • • ,N - 1, (5.42) 

and 

xfc(n) = 6.4smc[0.27r(n-18.6)],    Ä = 6,7,    n = 0,1, • • -,N - 1, (5.43) 

where sinc(x) = sia{x)/x. Figure 5.4(a) shows the modulus of the true SAR image. Note 

that two of the dihedrals are located in the same cross-range and are closely spaced in range 

and two of them are located in the same range. Of the four trihedrals, two of them are closely 

spaced in range and the other two are located in the same range. In this example, the hybrid 

method and SPAR have the same estimated number of scatterers, K = 7. Figure 5.4(b) 

shows the windowed 2-D FFT SAR image obtained by applying the normalized 2-D FFT 

to the windowed data matrix. SAR images formed via the hybrid method, SPAR, RELAX- 

NLS, and the modified RELAX-NLS algorithm are shown in Figures 5.4(c) through 5.4(f), 

respectively. We note that at high SNR, the hybrid image is similar to the SPAR image. Both 

of the parametric RELAX-NLS and the modified RELAX-NLS algorithms outperform their 

semi-parametric counterparts SPAR and the hybrid method since the data model used by the 

parametric methods is correct rather than approximate. For this example, our simulations 

show that the ratios between the MATLAB flops needed by the hybrid method, SPAR, 

the modified RELAX-NLS, and RELAX-NLS over the flops needed by the windowed FFT 

method are 27.4, 28.4, 50.1, and 70.8, respectively. Note that both SPAR and the hybrid 

method are computationally more efficient than RELAX-NLS and the modified RELAX-NLS 

algorithm, with the modified RELAX-NLS being more efficient than RELAX-NLS. 

Consider next a numerical example with low SNR. The SAR phase history data are the 

same as in the above example except that the noise variance is increased to a\ — 6. SAR 

images obtained by using the windowed 2-D FFT, the hybrid method, SPAR, RELAX, and 

the modified RELAX-NLS algorithm are shown in Figures 5.5(a) through 5.5(e), respectively. 
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Note that the artifact problem starts to show up in the SAR image obtained via the hybrid 

method in Figure 5.5(b) due to large parameter estimation errors. By comparing Figures 

5.5(c) with (b), it can be seen that SPAR can effectively mitigate the artifact problem. 

Finally, consider an experimental example of SAR image formation by using the Moving 

and Stationary Target Acquisition and Recognition (MSTAR) Slicy data collected by imaging 

an object consisting of both trihedral and dihedral corner reflectors, which is shown in Figure 

5.6. The data were collected by the Sandia National Laboratory using the STARLOS sensor. 

The field data were collected by a spotlight-mode SAR with a carrier frequency of 9.559 GHz 

and bandwidth of 0.591 GHz. The radar was about 5 kilometers away from the ground object. 

The data were collected when the object was illuminated by the radar from approximately 

the azimuth angle 0° and elevation angle 30°. To cross-validate the experimental results 

given below, XPATCH [26], a high frequency electromagnetic scattering prediction code for 

complex 3-D objects, was used to generate very high resolution phase history data for the 

object shown in Figure 5.6. Note that the computer-aided design (CAD) model used in 

XPATCH may have slightly different dimensions as the object used to collect the Slicy data. 

The data generated by XPATCH has a resolution of 0.038 meters in both range and cross- 

range, and the corresponding windowed FFT SAR image is shown in Figure 5.7(a). (We have 

used the log scale for all of the images shown in Figure 5.7.) The original experimental Slicy 

data have a resolution of 0.3 meters in range and 0.32 meters in cross-range. The 32 x 32 data 

matrix we used to demonstrate the performance of our algorithms has a spoiled resolution of 

0.51 meters in range and 0.54 meters in cross-range. The windowed 2-D FFT SAR image of 

this data matrix is shown in Figure 5.7(b). Figures 5.7(c) and (d), respectively, show the SAR 

images obtained via the hybrid method and SPAR with K = 7 (obtained via the generalized 

Akaike information criterion). Figures 5.7(e) and (f) show the SAR images obtained via 

RELAX-NLS and the modified RELAX-NLS algorithm with K = 7, respectively. Note that 

the hybrid method has a more severe artifact problem than SPAR. Note also that the SPAR 

image shown in Figure 5.7(d) appears to fit Figure 5.7(a) and the characteristics of the 

object in Figure 5.6 well. However, the parametric algorithms are not as robust as SPAR 

since the parametric images shown in Figures 5.7(e) and (f) do not fit Figure 5.7(a) as well 
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with one of the scatterers mis-identified and mis-located. For this experimental example, the 

ratios between the MATLAB flops needed by the hybrid method, SPAR, RELAX-NLS, and 

the modified RELAX-NLS over the flops needed by the windowed FFT method are 29.2, 

16.7, 32.8, and 43.1, respectively. Note that SPAR can sometimes be faster than the hybrid 

method! 

5.7    Conclusions 

We have presented a semi-parametric spectral estimation algorithm, referred to as SPAR, 

for SAR target feature extraction and image formation based on a flexible data model. SPAR 

can be used to effectively mitigate the artifact problem encountered by the hybrid algorithm 

for SAR image formation due to the flexibility of the data model. SPAR can also be used to 

provide initial conditions needed by other parametric algorithms to reduce the total amount 

of computations needed to form SAR images. Due to the flexible data model used by SPAR, 

this semi-parametric algorithm is more robust and computationally more efficient than the 

existing parametric algorithms. 
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Appendix A: Feature Extraction of a Single Scatterer via SPAR 

The estimates of {0,x,/,/} can be obtained by minimizing the following NLS cost 

function: 

d^x,/,/)   =   |Ys-e^G(x,/,/) 

£ \\ySü - z(n)e*2^W(/)|r • (5-44) 
N-l 

£ 
n=0 

2 

F 

2 
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c2(^x,/,/) = E1(lly-ll2 + Ar 

After simple calculations, we can rewrite (5.44) as 

-^Re2 [e'^^^W)]} ■ (5-45) 

Minimizing (5.45) with respect to x(n) yields 

x(n) = ^Re [e-^^Vs^W)] ,    n = 0,1, • ■ •, # - 1. (5.46) 

Hence 

x   =   ^Re{e-^[Yf<(/)]0^(/)} 

^Re[e-^y,(/) ©<(/)] (5.47) 

Inserting (5.46) into (5.45), we obtain the NLS estimates {$, f, /} of {$, f, /} by equivalent^ 

maximizing the following cost function: 

N-l  . . ....      ..,,2 

-j[2iT{2f)n+2<j>] } •      (5-48) 
n=0 

Let ys(n, /) denote the nth element of y,(/), n = 0,1, • • •, N - 1. Then ^ is given by 

<£ = J-g ( £ K-M/)]2 e-^(2/> > • (5-49) 
n=0 

Inserting (5.49) into (5.48) and ignoring the scaling factor, we can simplify (5.48) to: 

JV-l 

C4(/,/)   =    E&N(/) + 
n=0 

N-l 

E 
n=0 
EK^(/)]2e-W2/> 

=   ||y.(/)ll2 + 
N-l 

E 
Ä=0 
E^/Ki27r(2/> (5.50) 

Then the NLS estimates {/, /} of {/, /} are determined by 

{/, /} = arg max C4(/, /)• (5.51) 
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Note that ys(f) in (5.26) can be obtained by applying 1-D FFT to each column of Ys and 

the second term in (5.50) can also be readily obtained by applying 1-D FFT to the sequence 

{fs(n, f)}§~o with 2/ as the frequency variable. Hence {/,/} can be obtained via a 2- 

D search for the location corresponding to the peak of C4(/,/), which can be computed 

efficiently via 1-D FFTs. Note also that padding with zeros for the 1-D FFTs is necessary 

to achieve high accuracy for the frequency estimates. An alternative approach is to find an 

approximate location corresponding to the global maximum with 1-D FFT without much 

zero-padding and then use the approximate location as the initial condition to find a more 

accurate position via, for example, alternately using the FMIN function in MATLAB. 
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(a) (b) 

(c) (d) 

Figure 5.1: Ambiguity effect on the SAR image formation in the absence of range estima- 

tion errors, (a) True windowed FFT SAR image, (b) Windowed FFT image of the first 

"scatterer". (c) Windowed FFT image of the second "scatterer". (d) Combined windowed 

FFT image of the two "scatterers". (The vertical and horizontal axes are for range and 

cross-range, respectively.) 
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(a) (b) 

(c) (d) 

Figure 5.2: Ambiguity effect on the SAR image formation in the presence of range estimation 

errors, (a) Windowed FFT image of the first "scatterer". (b) Windowed FFT image of the 

second "scatterer". (c) Combined windowed FFT image of the two "scatterers" with C = 1 

(without extrapolation), (d) Combined windowed FFT image with £ = 2. (The vertical and 

horizontal axes are for range and cross-range, respectively.) 
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Figure 5.3: Block diagram for SPAR. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 5.4: Comparison of SAR images formed using different algorithms for simulated data 

at high SNR {a2
n = 0.6). (a) True SAR image, (b) Windowed 2-D FFT SAR image, (c) 

The hybrid SAR image, (d) SPAR SAR image, (e) RELAX-NLS SAR image, (f) Modified 

RELAX-NLS SAR image. (The vertical and horizontal axes are for range and cross-range, 

respectively.) 
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(a) (b) 

(c) (d) 

(e) 

Figure 5.5: Comparison of SAR images formed using different algorithms for simulated data 

at low SNR {o\ = 6). (a) Windowed 2-D FFT SAR image, (b) The hybrid SAR image, (c) 

SPAR SAR image,  (d) RELAX-NLS SAR image,  (e) Modified RELAX-NLS SAR image. 

(The vertical and horizontal axes are for range and cross-range, respectively.) 
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Figure 5.6: Target photo taken at 45° azimuth angle. 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure 5.7: Comparison of SAR images obtained via different algorithms for the Shcy data 
hbl5533.015 (0° azimuth and 30° elevation angles), (a) Windowed 2-D FFT SAR image from 
the data generated by XPATCH with resolution 0.038 x 0.038 meters, (b) Windowed 2-D 
FFT SAR image from the Slicy data with resolution 0.51 x 0.54 meters, (c) The hybrid SAR 
image obtained from the data used in (b). (d) SPAR SAR image obtained from the data 
used in (b). (e) RELAX-NLS SAR image obtained from the data used in (b). (f) Modified 
RELAX-NLS SAR image obtained from the data used in (b). (The vertical and horizontal 
axes are for range and cross-range, respectively.) 
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6.    Synthetic Aperture Radar Motion Compensation and Feature 
Extraction via a Relaxation Based Algorithm 

6.1    Introduction 

Synthetic aperture radar (SAR) can be used to form radar target images and extract 

target features with high resolution in both range and cross-range directions. For an airborne 

SAR system, phase errors occur along the synthetic aperture (cross-range direction) due to 

uncompensated platform motion. These errors can significantly degrade the SAR image 

quality. Many algorithms have been proposed to compensate these unknown phase errors 

[1]. Most existing motion compensation algorithms are non-parametric and hence are robust. 

Among these algorithms, the phase-gradient autofocus (PGA) algorithm [1, 2, 3, 4, 5] is one 

of the most well-known and competitive algorithms. 

In many applications including automatic target classification, however, it is convenient 

to describe a small radar target via several parameters, which are the features of the target. 

High resolution parametric algorithms, such as the RELAX algorithm, have been derived to 

extract the target features [6]. Yet these algorithms assume that the motion errors do not 

exist. It appears that extracting target features via parametric methods in the presence of 

motion errors has not been addressed before. 

In this chapter, we establish a data model for the feature extraction of point scatterers in 

the presence of uncompensated aperture motion errors and unknown noise. We also propose 

a parametric relaxation-based algorithm to estimate the target features as well as the motion 

errors based on the data model. This algorithm is referred to as the motion compensation 

RELAX algorithm or MCRELAX in this chapter. MCRELAX minimizes a complicated 

nonlinear least-squares cost function and is performed by an alternating procedure, which 

iteratively updates the estimates of the target features by fixing the estimates of the phase 

errors and then updates the estimates of the phase errors by fixing the estimates of the 

target features. The initial estimates of the phase errors in the MCRELAX algorithm can 

be obtained by using the PGA algorithm to speed up the convergence rate of the former. 

MCRELAX can also used for motion compensation only and is still computationally simple 
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since it requires a sequence FFTs (fast Fourier transforms) and vector products and hence 

can be implemented in hardware easily. 

The remainder of the chapter is organized as follows. In Section 6.2, we describe the data 

model and formulate the problem of interest. Section 6.3 presents the MCRELAX algorithm. 

In Section 6.4, we derive the Cramer-Rao bound (CRB) for the target features and phase 

errors. Section 6.5 shows the results of several numerical and experimental examples. Section 

6.6 contains our conclusions. Finally, to make this chapter self-contained, the computational 

steps of the PGA algorithm are summarized in the appendix. 

6.2    Data Model and Problem Formulation 

We first describe how one can obtain 1-D target features via a high range resolution 

radar. The range resolution of a radar is determined by the radar bandwidth. To achieve 

high resolution in range, the radar must transmit wideband pulses, which are often linear 

frequency modulated (FM) chirp pulses. A normalized chirp pulse can be written as 

s(t) = cos [(2TT/0* + 7*2)] ,     |*| < To/2, (6.1) 

where f0 denotes the carrier frequency, 2j denotes the FM rate, and T0 denotes the width 

of the pulse. We assume that f0, 7, and T0 are known. The signal returned by a scatterer 

of a target has the form (after mixed with the cosine and sine terms) 

r(t) = ST exp {-J[2TT/0(* - r) + 7(* - r)2]} , (6.2) 

where ST is determined by the radar cross section (RCS) of the scatterer and r denotes 

the round-trip time delay. The demodulated signal d(t) is obtained by mixing r(t) with 

exp{-j [27r/o(* - T0) +7(* - T0)
2]} for some given r0 (to be defined later on), where (•)* 

denotes the complex conjugate, 

d(t) = 6T exp [J(2TT/O - 277-0)(r - r0)] exp [~h(r - r0)
2] exp \j2-y(r - r0)t] • (6.3) 

The term exp [-J7(r - r0)
2] in (6.3) is usual close to a constant and can also be partially 

removed [7] as follows.  Let D(u) denote the Fourier transform of d(t).  Then the inverse 
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Fourier transform of D(u) exp (j^) will have the term exp [-JJ(T - r0)
2] removed. Yet this 

removal can only be approximate since d(t) is not known for all t and hence D(u) is not 

known exactly. The closer exp [-jj{r - r0)
2] is to a constant for rmin < r < rmax, where rmax 

and rmin correspond to the maximum and minimum values, respectively, of the round-trip 

time delays between the scatterers of a target and the radar, the better its removal. With 

this removal, we have 

d(t) = ST exp [j(27r/o - 27r0) (r - r0)] exp [j2j(r - r0)t], (6.4) 

which is a sinusoidal signal with frequency 27(r - r0) and complex amplitude 

ST exp [7(271-/0 - 27T0) (r - r0)]. We know rmax and rmin approximately since we assume that 

the altitude, antenna beamwidth, and grazing angle of the radar are known. We also assume 

that (rmax-Tmia) <C T0. Then for -T0/2+rmax < t < T0/2+rmia, the scatterers of the target 

at different ranges correspond to different frequencies of the signal d(t), while the RCS's of 

the scatterers are proportional to the amplitudes of the corresponding sinusoids. The ranges 

and RCS's of the target scatterers are the one-dimensional (1-D) target features. 

We now describe how one can obtain two-dimensional (2-D) target features via a spotlight- 

mode SAR. The cross-range resolution of an ordinary ranging radar is limited by its antenna 

beamwidth. For an airborne or spaceborne system, a narrow antenna beamwidth requires 

an antenna that may be too large to be carried on board of the airplane or the spacecraft. 

Spotlight-mode SAR avoids this requirement by collecting coherent radar returns while view- 

ing a target from many different angles [7]. By properly processing the return signals, we 

can also achieve high resolution in cross-range. 

A broadside data collection geometry in a spotlight-mode SAR is shown in Figure 6.1. 

The XYZ coordinate system is centered on a small patch of ground, where a target is 

located. The angle 9 and <f> denote the azimuth and elevation angles, respectively, of the 

radar relative to the XYZ coordinate system. The distance between the radar and the 

coordinate origin of the XYZ coordinate system is J?0- The ground is illuminated by a 

narrow radio frequency (RF) beam from the moving radar that moves along the 9 direction 

but with <f> and fi0 fixed.  In Figure 6.1, J? denotes the distance between the radar and a 
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scatterer at the position (x,y,z). We assume that 0, <f>, and #0 are known. 

The range R of the scatterer located at (a;, y, z) can be written as 

R= [(Ro cos 6 cos (j) - x)2 + (R0 sin 6 cos <f)-y)2 + (Ro sin <f)-z)2]     . (6.5) 

Under the conditions ^ < 1, % < 1, and -^ < 1, we have 

r\ n O  T   X / 2 

R   =   i?0[l-2^cosöcos(/»-2^sinöcos<A-24sin^+^±^j 
^    I"- ^ •. / «•/> JL z     ■     J.   ,   x2+y2+z2-(x cos fl cos <j>+y sin 0 cos ift+z sin </>)21 

«   Äo [l ~ ^cos0cos</> - ^sin 0 cos # - ^ sm</> + —y- > ^ LJ 

=   iZo - *cos0cos0 - y rinflsM - ^sin^, + «'^+^-(»°»>«y°^^^»)'. 
(6.6) 

For the broadside data collection geometry, 0 is very small [31, 7] . For very small 0, we have 

sin 20 « 2 sin 0 and cos 0 « 1. Then 

x2 + y2 + z2 - (x cos 6 cos (j)-\-y sin 0 cos <£ + z sin ^f))2 

«   rc2sin2^ + y2 + 2;2cos2^-a;2/sin20cos2(/»-a;2;cos0sin2(/>-y2;sin0sin2^       (6.7) 

~   (*2si"2 <t>+y2+z2 cos2 0-^sin 2<ft) cos 9 cos 6-2 (xy cos c6 + yz sin 0) sin 9 cos 0, 
\ COS <$> ) 

and 

2 sin (j) fa (z tan (j>) cos 0 cos ^. (6.8) 

Then 

R fa Ro - x cos 9 cos <j> - y sin 0 cos <f>, (6.9) 

z2sin2<£ + y2 + z2cos20-:r,2:sm2(/> /«iru 
x = x + ztancp jrjz T , (o.iu/ 

2i?o cos <j> 

xy cos <j) + yz sin (j) (R nx 

Note that the second term of the right side of (6.10) is due to the range layover of the 

scatterer with non-zero height z [5].   The third term of the right side of (6.10) and the 

second term of the right side of (6.11) are due to the range curvature effect [5]. 

Let r0 = 2^L. Since r=2f, then from (6.4), we have 

d(t, 9) = 6XjVtz exp [j{xtx + yty)}, (6.12) 

109 

where 

and 



where 8x,VyZ is proportional to the RCS of the scatterer located &t(x,y,z), 

JHO + 7ft ~ ro)] cos ^ (6> 

c 

and 
4^/0 +7ft - rg)] cos ^gin^ (614) 

y c 

Note that dft, 0) in (6.12) is a 2-D sinusoidal signal. The frequency pair of the 2-D sinusoid 

corresponds to the 2-D location {x, y} of the scatterer, while the amplitude is proportional 

to its RCS. Note that {x, y) is the location due to the layover and range curvature effects 

[5] and is not the true location (x, y, z) of the scatterer. The range curvature effect can be 

neglected for large RQ. However, this SAR system cannot distinguish the scatterers located 

at (x, y, z) and (x, y, 0) and combines these scatterers into one scatterer. The scatterers we 

referred to below are those resulted from such combinations. When a target has multiple 

scatterers with distinct (x,y), d(t,6) in (6.12) will be a sum of sinusoids. The 2-D locations 

and RCS's of the target scatterers are the 2-D target features. Since usually the samples on 

the t and 9 axes are uniformly spaced, the samples of tx and ty occur at the points of a polar 

grid. Hence Polar-to-Cartesian interpolation is needed for the samples of tx and ty to occur 

at rectangular grid points [7]. 

Thus after Polar-to-Cartesian interpolation and sampling, the signal reflected by a radar 

target that consists of K 2-D point scatterers in an ideal SAR system can be described as: 

s(m,770 = £äfeexp[j27r(m/fe + m/fc)],    m = 0,1, • • • ,M - 1,    m = 0,1, • • • ,M - 1, 
fc=1 (6.15) 

where the complex amplitude äk and the 2-D frequency pair {fk, fa} € [-0.5 0.5] Hz, 

respectively, are proportional to the radar cross section (RCS) and the 2-D location (range 

and cross-range) of the feth scatterer of the target, and M and M denote the numbers of 

available data samples. 

In the derivations of the above data model, we have assumed that the radar moves along 

the 6 direction with RQ known exactly. For a practical airborne SAR system, however, the 

distance between the moving radar and the coordinate origin of the XYZ coordinate system 
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may not be known exactly due to platform position uncertainty [5]. Also, the round-trip 

time delay between the radar and the target may be somewhat random due to atmospheric 

turbulence [5] and the randomness has the same effect on SAR imaging as when RQ is in error. 

For a given 9, let ARQ(9) denote the distance error between the radar and the coordinate 

origin. Then the time delay error has the form AT(6) = 2A^eK As we can see from (6.4), 

this AT{6) mainly causes a phase error exp [j2nf0AT(9)} because exp [j2-yAT(9)(t - r0)] « 1 

for |* - To | < T0> which is due to 7T0 < TT/0. Since 9 is usually very small [31, 7] , we neglect 

the phase errors caused by the errors in 9 and <j>. Note that the phase errors are independent 

of t. Hence, by neglecting the effect of Polar-to-Cartesian interpolation, the signal obtained 

by a realistic SAR system can be described as 

y(m, fh) = s(m, fh) exp (j^) + e(m, fh), (6.16) 

where {4>m}m=a are the phase errors due to the uncompensated aperture motion and 

e(m, fh),    m = 0,1, • • •, M - 1,    fh = 0,1, • • •, M - 1, denote the unknown noise. 

We note that for any real scalars ßx and ß2, Equation (6.16) still holds when {&k, fk, /fe}|Li 

and {V>m}f=o\ respectively, are replaced by {äk exp (jßx), fk, fk + /?2}f=i and {^m - ßi- 

27r/32m}£r0
1. Hence the data model in (6.16) has ambiguities. That is, we cannot uniquely 

determine [fk\ _  and the phases of {äfc}f=1. To avoid these ambiguities, let 

ak = äkexp(j4>o),    k = l,2,---,K, (6.17) 

^=^-^-A-^,    m = 0,l,---,M-l, (6.18) 

and 

Note that Vo = *Pi = 0- Hence we can rewrite (6.16) as 

y(m, fh) = s(m, fh) exp (jtpm) + e(m, fh), (6.20) 

where 
K 

I 
fc=i 

s(m, m) = ^2ak exp [j2Tr(mfk + mjk)\ . (6.21) 
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Let Y and E denote the matrices whose mmth elements are y{m,fh) and e(m,fh), respec- 

tively. Let 

P = diag|l,   1,    exp(jip2),   •••,   exp O'tf'jfr-i) } > (6-22) 

and 

vM(fk) 
T 

(6.23) 1   exp(j27r/fc)   •••   exp[j2n(M - l)/fe] 

where (-)T denotes the transpose. Then (6.20) can be written in the following matrix form: 

Y = £afcwM(A)«5*(/*)P + E. (6-24) 
fc=i 

Our problem of interest herein is to estimate {ak, fk, fk}k=l 
and {^m}mZl from Y in 

(6.24). 

6.3    The MCRELAX Algorithm 

f ~    -_ "I K f.    i M-l 
The MCRELAX algorithm obtains the estimates |dfc, fk, fk> _  and {^m\m=2, respec- 

tively, of {ak, fk, fk}*=i and {ipm}^2 hY minimizing the following NLS criterion: 

Ci l{ak,fk,fk}k=l,{'lPrh}^) = 
K 2 

Y-2öfc«Af(/fc)w&(/*)P 
fc=i 

(6.25) 

where || • ||F denotes the Probenius norm. When the noise e(m,m) is the zero-mean white 

Gaussian random process, the NLS estimates of the unknown parameters obtained with 

MCRELAX coincide with the maximum likelihood (ML) estimates of the parameters. When 

the noise is colored, the NLS estimates are no longer the ML estimates, but they are still 

statistically very accurate. The minimization of (6.25) is a very complicated optimization 

problem. Before we present MCRELAX, let us consider the following preparations. 

Assume first that \ ak, fk, fk > are given. Let S denote the matrix whose mmth element 

is s(m,fh), where s(m,fh) is the same as s(m,m) in (6.21) except that {ak, fk, fk}k:=1 are 

replaced by {ak, /fe, fk}k=v Let y™ and sm, respectively, denote the mth columns of Y and 
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S. Then minimizing Cx in (6.25) with respect to {MftJ becomes minimizing 

m=2 

where || • || denotes the Euclidean norm, which gives the estimates of {^m}ÄI2
: 

^ = angle{sgy^} ,    m = 2,3, • • -,M - 1, (6.27) 

where angle(z) denotes the phase of x and (-)H denotes the complex conjugate transpose. 

Assuming next that {^m}f=2 are given- Let Z be the data matrix motion compensated 

by using P, where P is the same as P in (6.22) except that {V>m}£f=2 are replaced by 

{V>m}fc2\ i-e., 
Z = YP-1. (6-28) 

Since P is a unitary matrix, matrices Z and Y have the same Frobenius norm. Thus we can 

equivalently minimize the following cost function to obtain the estimate \&k,fk,hj_   0I" 

f " \K 

\ak,fk,fk]k=1
: 

C3 ([ak, fk, h}k=l) =   Z - E ö*«Af(A)w^(Ä) 

Let 
K ^ 

Zfc = Z -     53    &iUMÜi)UTMUi). 
i=l,i^k 

Then minimizing   Zfc - afewM(/fc)a;^(Ä)||F with respect to ak, fk, and fk yields [6] 

(/*»/fc) = ,ma^ WM(/*)Z*WJ&(/*) 

(6.29) 

(6.30) 

and 

«A: 
u,*(/fc)Zfca^(/fc) 

MM 

(6.31) 

(6.32) 

/* — fkJk—fk 

Note that /fc and /fc in (6.31) can be obtained as the location of the dominant peak of the 

2-D periodogram |w&(A)Zfcwk(/fc)|
2 /(MM), which can be efficiently computed by using 

a 2-D FFT (fast Fourier transform) with the data matrix Zfe padded with zeros. Then ah is 

easily computed from the complex height of the peak of u>^(A)Zfcü;^(Ä)/(MM). 
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It has been shown in [6] that the minimization of C3 in (6.29) can be efficiently achieved 

by using the RELAX algorithm which requires a sequence of FFTs. Let K denote the 

intermediate number of scatterers. Then RELAX is described by the following steps: 

Step (1): Assume K=l. Obtain j/i, M and dx from Z (instead of Zk) by using (6.31) 

and (6.32), respectively. 

Step (2): Assume K = 2. Obtain Z2 with (6.30) by using A, /1; and di obtained in 

Step (1). Obtain {/2,/2} and d2 from Z2 by using (6.31) and (6.32), respectively. Next, 

compute Zi with (6.30) by using /2, /2, and d2 and redetermine |/i,/ij and &i from Zi. 

Iterate the previous two substeps until "practical convergence" is achieved (to be dis- 

cussed later on). 

Step (3): Assume K = 3. Compute Z3 with (6.30) by using {fi,fi,&i}l=i obtained in 

Step (2). Obtain j/3,/3} and d3 from Z3. Next, compute Zx with by using {/;,£, di}?=2 

and redetermine {/i,/i} and &i from Zx. Then compute Z2 by using {/<,/*, 0^=1,3 and 

redetermine I /2, f2 > and d2 from Z2. 

Iterate the previous three substeps until "practical convergence". 

Remaining Steps: Continue similarly until K = K. (Whenever K is unknown, it can 

be estimated from the available data, for instance, by using generalized AIC rules which are 

particularly tailored to the RELAX method of parameter estimation. See, e.g., [6].) 

The "practical convergence" in the iterations of the above RELAX algorithm may be 

determined by checking the relative change of the cost function C3 I |/fc,/fc,dfc| ^ I in 

(6.29) between two consecutive iterations. In our numerical examples, we terminate the 

iterative process in each of the above steps when the aforementioned relative change is less 

than £X = 10~3. Our numerical examples show that the iterations, with this convergence 

criterion, usually converge in a few steps. 

To speed up the convergence rate of MCRELAX, we use the PGA algorithm (see the ap- 

pendix) to provide the initial estimates of the motion errors. A flow chart of the MCRELAX 

algorithm is shown in Figure 6.2. MCRELAX can be described with the following steps: 

Step 1: Obtain the initial estimates of {^m}^=2 by using the PGA algorithm. 
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Step 2: Compensate the motion errors by using (6.28). 

Step 3: Estimate {&*,/*,/*}£=! from Z by using the RELAX algorithm. 

Step 4: Redetermine {V>m}^=2 
bY usin§ (6-27). 

Step 5: Check for practical convergence (see later on). If so, stop; otherwise go to Step 

2, but only perform Step (K) of the RELAX algorithm in Step 3. 

The practical convergence of the above iterations may be determined by checking the 

relative change of the cost function d in (6.25) between two consecutive iterations. In our 

numerical examples, we terminate the iterative process when the aforementioned relative 

change is less than e2 = 10"3. Our numerical examples show that the iterations, with this 

convergence criterion, also usually converge in a few steps. 

Since a minimization is performed at every iteration, the value of the cost function C\ 

in (6.25) cannot increase. As a result, under mild conditions, the MCRELAX algorithm is 

bound to converge to a local minimum of C\ [8]. Depending on the data parameters, the 

local minimum may or may not be the global one. To achieve better performance, we could 

also go to Step (1) instead of Step (K) of Step 3 for the first few iterations of MCRELAX. 

Doing so does not change the convergence property of MCRELAX. 

When only the first three steps of MCRELAX are used for parameter estimation, we refer 

to the approach as PGA-RELAX. We will show in Section 5 that the parameter estimates 

obtained by using MCRELAX is more accurate than those by using PGA-RELAX. 

6.4    The CRB of the Parameter Estimates 

We sketch below the derivation of the CRBs for the parameter estimates of the data 

model in (6.24) when the additive noise is assumed to be a zero-mean colored Gaussian 

random process with an unknown covariance matrix. 

Let 

y = vec{Y}, (6.33) 

and 

e = vec{E}, (6.34) 
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where vec[X] denotes the vector [ xf   x; 

X. Then (6.24) can be written as 

K 

x^ ]T with {x.k}k=i being the columns of 

y = £ ak [
PW

M(Ä)J ® W
M(A) + e = Slot + e, (6.35) 

fc=i 

where <g> denotes the Kronecker product, 

n = {PwÄ(/i)}®ww(A)   •••   {PU)M(/K)}®WM(/K) 

and 

a 

(6.36) 

(6.37) a\   a2   •• •   OLK 

Let Q = E{eeH} be the covariance matrix of e, where E{-} denotes the expectation. The 

unknown variables in the likelihood function of y are the elements of Q, the real and imag- 

inary parts of the amplitudes, the frequency pairs, and the phase errors. The extended 

Slepian-Bangs' formula for the ijth element of the Fisher information matrix has the form 

[9, 10]: 

{FIM}y = tr (Q-^Q-'Q;-) + 2Re [(a*n*)'4 Q
1 (Oa)'^ , (6.38) 

where X- denotes the derivative of X with respect to the zth unknown parameter, tr(X) 

denotes the trace of X, and Re(X) denotes the real part of X. Note that FIM is a block 

diagonal matrix since Q does not depend on the parameters in (fla), and (fia) does not 

depend on the elements of Q. Hence the CRB of the estimates of the target features and 

phase errors can be determined from the second term of the right side of (6.38). 

Let 

V ReT(a)   ImT(a)   fT   F   if 

where Im(X) denotes the imaginary part of X, 

f = 

f = 

/i   h 

h   h 

I K 

IK 

(6.39) 

(6.40) 

(6.41) 
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and 
r 1T 

</>=      ^2     V>3     •■•     ^Ä-l • (6-42) 

Let 

F = ft   jfi   D,   D/   D^    , (6-43) 

where the Jfeth columns of D/ and D/, respectively, are afc9 {[Pwjßr(Ä)] ® UM(A)) /0/fc and 

txkd{[Pwü(fk)]®«>M(fk)}/dfk, k = 1,2,---,ÜT, and the roth column of D^ is 

d {Ef=i «fcpWAf (/*)] ® "M(fk)} /*, m = 2,3, ■ • •, M - 1. Then 

CRBfa) = ^RefF^Q^F)]"1. (6.44) 

6.5    Numerical and Experimental Examples 

We first present an experimental example comparing the performance of the MCRELAX 

algorithm with that of the PGA algorithm. The data matrix is 256 x 256, which is a portion 

of the data collected by one of the two apertures of the ERIM's (Environmental Research 

Institute of Michigan's) DCS IFSAR (interferometric SAR). These data have already been 

motion compensated by some unknown means. Figure 6.3(a) shows the modulus of the 

image (in dB and scaled to be between 0 and 255) obtained by applying FFT with Kaiser 

window and shape parameter 6 to the original data matrix. To test the performance of 

the MCRELAX and the PGA algorithms, we added phase errors to the data matrix. The 

phase errors are shown in Figure 6.4 and are generated by an 8th-order polynomial and are 

similar to the phase errors used in [1]. The SAR image obtained from the data with the added 

phase errors is shown in Figure 6.3(b). Figures 6.3(c) and (d) show the images obtained after 

motion compensation by PGA and MCRELAX, respectively. In the MCRELAX algorithm, 

we assume that there are 50 dominant point scatterers in the image. (We have also tried 

30 and the results are similar.) The images in Figures 6.3(c) and (d) are very close to the 

original one in Figure 6.3(a), which shows that PGA indeed works very well. The comparison 

of the added phase error estimates obtained by PGA and MCRELAX with the true values 

is shown in Figure 6.4, which again shows that the phase errors are well estimated by 

PGA and MCRELAX. However, for perhaps rare cases where strong closely spaced point 
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scatterers occur in the same range, PGA may not work as well as MCRELAX since PGA 

is a nonparametric spectral estimation method while MCRELAX is a parametric one and 

has better resolution than nonparametric methods. To illustrate this point, we embedded 

three strong point scatterers in one range. The powers of the added scatterers relative to 

the power of the strongest pixel in Figure 6.3(a) are 14.0, 14.2, and 14.0 dB. We then added 

the same motion error as in Figure 6.3(b). The so-obtained images with and without the 

added motion errors are shown in Figures 6.5(a) and (b), respectively. Figures 6.5(c) and 

(d), respectively, show the images obtained after motion compensation by applying the PGA 

algorithm and the MCRELAX algorithm to the data used in Figure 6.5(b). We note that 

the image obtained with the MCRELAX algorithm is better than that obtained with PGA. 

The comparison of the added phase error estimates obtained by PGA and MCRELAX with 

the true values is shown in Figure 6.6. We see that the phase errors estimated by using 

MCRELAX are better than those obtained by using PGA. Yet the number of MATLAB 

flops required by MCRELAX is about 2 x 103 times as much as that required by PGA. 

Moreover, if we remove the range line where the strong embedded scatterers are located, 

PGA works as well as in Figure 6.3, which shows that PGA is indeed a very good motion 

compensation algorithm. 

We next consider an example of a simulated tank. The true features of the simulated 

tank are shown in Table 6.1, which are obtained from an XPATCH [11] simulated tank. 

Figure 6.7(a) depicts the modulus of the true RCS's of the scatterers as a function of range 

and cross-range. The motion errors are identically and independently distributed random 

variables with uniform distribution between 0 and 2ir. The noise sequence is zero-mean 

circularly symmetric white Gaussian random processes that are uncorrelated with the target 

parameters and have variance a2 = 20. The modulus of the RCS's of the scatterers obtained 

via FFT without windowing but with zero-padding in the presence of the phase errors and 

noise are shown in Figure 6.7(b). Figure 6.7(c) shows the modulus of the RCS's obtained 

by applying FFT to the data that is motion compensated by PGA. Figures 6.7(d) and (e), 

respectively, show the modulus of the RCS's obtained by PGA-RELAX and MCRELAX. 

We note that PGA can reduce the motion errors significantly and is very robust. Note also 
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that both PGA-RELAX and MCRELAX can correctly resolve all eight scatterers, including 

those that cannot be resolved by FFT. Moreover, the parameter estimates obtained with 

MCRELAX are closer to the true ones than those obtained with PGA-RELAX. (Note, for 

example, the two largest scatterers.) 

Let us now consider the CRBs of the target parameters. In target classification appli- 

cations, it is often the relative positions of the scatterers that are more important than a 

common shift in range or cross-range. Let S be a common shift of {fk}k=v i-e-> 

fk = fk- a, (6.45) 

such that 

Then 

K 

1 K 

5 = i? H /*■ K fc=i 

Hence / = [ jx    ■■•   fK]
T'ls related to f by the following linear transformation 

f = Tf, 

(6.46) 

(6.47) 

(6.48) 

where 

Similarly, let 

T = 
K 

K-\     -1      •••      -1 

-1     K-\   •■■     -1 

-1        -1 

f = Tf, 

K-l 

(6.49) 

(6.50) 

and 
K 

-"■ fe=i 

Then the CRB matrix of f is related to f by 

(6.51) 

CRB(f) = TCRB(f)TT, (6.52) 
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and 

where 

Similarly, 

and 

CRB(6) = ^lTCRB(f)l, (6.53) 

1 = [1   1   •••   1]T (6-54) 

CRB(f) = TCRB(f)TT, (6.55) 

CRB(6) = ^lrCRB(f)l. (6.56) 

Table 6.2 compares the CRBs of {afc}f=1, {fk}k=l, [fk] _ > {/fcj     . |/*J     . 5' and 

I for the aforementioned simulated tank example for both the case of known and the case 

of unknown motion errors. Note that the case of known motion errors is equivalent to the 

case of no motion errors.  We note that as compared to the case of known motion errors, 

the unknown motion errors have the most significant impact on the CRBs of \ fk >      and 
l    J fc=i 

5, which are almost the same. The unknown motion errors have little effect on other target 

parameters, including the relative cross-range positions If A _ .  Hence when the motion 

f - 1 K 

errors are unknown, the main errors in {fk \      are due to the error of a common shift. 
I     )k=l 

Finally, Table 6.3 shows the comparisons of the CRBs and the mean-squared errors 

(MSEs) of the parameter estimates obtained by using PGA-RELAX and MCRELAX for 

the simulated tank example. Note that only relative positions and the common shifts are 

considered. The MSEs are obtained from 100 Monte-Carlo trials. We note that the MSEs 

of the parameter estimates obtained with MCRELAX are very close to the corresponding 

CRBs, while those obtained with PGA-RELAX are not. Thus, iterating Steps 2 through 

5 in MCRELAX can improve the accuracy of the parameter estimates. Yet the number of 

MATLAB flops required by MCRELAX is only about twice as much as that required by 

PGA-RELAX for this example. 
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6.6    Conclusions 

We have studied the problem of extracting target features via SAR in the presence 

of uncompensated aperture motion errors. A parametric data model of a spotlight-mode 

SAR system has been established. The Cramer-Rao bounds for the parameters of the data 

model have also been derived. The CRB analysis shows that the unknown motion errors 

can significantly affect the accuracy of a common shift of the scatterer positions in cross- 

range direction, but have little effect on other target parameters including the accuracy of 

the relative positions in the range direction. A relaxation-based MCRELAX algorithm for 

estimating both target features and motion errors has been devised. Simulation results have 

shown that the MSEs of the parameter estimates can approach the corresponding CRBs. We 

have also shown with a couple of examples that MCRELAX can simply be used for motion 

compensation only and can give good motion compensation results. 

Appendix - The PGA Algorithm 

To make this paper self-contained, we briefly describe the PGA algorithm. The algorithm 

we describe below is slightly different from the original PGA algorithm presented in [4] in 

that we avoid the ambiguity problems described in Section 2 by imposing ip0 = Vi = 0. 

The PGA algorithm can be summarized with the following steps (with Steps 2 to 4 being 

iterative): 

Step 1: Obtain V, the 2-D FFT of the data matrix Y. 

Step 2: For each row vm of V, m = 0,1, • • •, M - 1, perform the following operations: 

(a) Select the dominant peak of the modulus |vm| of vm and shift it to the origin (to 

remove its frequency offset). More specifically, let 

K,mt| =rnax| \Vmfl\,   \vmA\,   •••,   k„,M-il}' (6-57) 

where mf denote the cross-range position of the dominant peak. Then the shifted vector has 
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the form 

Vmfl     Vm:i     • • •     Vm^M_i ^m,mt     ^m.mt+1     ' * '     vm,M-\     vm,0     ^m,l     ' ' '     «m.mt-l 

(6.58) 

(b) Window the circularly shifted imagery. Let 2d) + 1 be the window length. Then the 

windowed data vector has the form 

Vm,0     vm,l     ■ ■ *    vm,M-l Vm,0 Öm,dt     0     •••    0    Vm,M-tf 

(6.59) 

M-\ Here the window length is identical for all range bins {vm}m=0 and is determined from 

u-\ 
S™=EIM.    ra = 0,l,---,M-l, (6.60) 

m=0 

by thresholding sm at the point 10 dB down from its peak, s0, then increasing this width by 

50% [4]. 

(c) Form an M x M matrix G whose rath row contains the 1-D inverse FFT of the 

windowed data vector vm. Let G = [ gl,   • • •,   g^-i 1» where 6* is the ™th column of G 

Step 3: Compute the difference estimates Afa = fa- 4>m-i of the motion phase errors 

{<t>m}%i=2 (of the current iteration) according to 

A4>m = A4>rn - A4>U       ffl = 1, 2, • • • , M - 1, (6.61) 

where 

Afa = angle {g£_ig*} ■ (6-62) 

Obtain fa by using fo = 0,    fh = 1,2, • • •, M - 1. (Note that we guarantee fa = fa = 0.) 

Step 4: Compensate for the motion errors (of the current iteration) 

y(m,m) = y{m,fh)exp(-jfa),    m = 0,1, • • -,M - l,m = 0,1, • • -,M - 1.       (6.63) 

Step 5: Iterate Steps 1 through 4 with y(m, fh) being replaced by y(m, fh) until conver- 

gence. 
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Note that the estimate fa of the motion error fa, m = 2,3,---,M-l, is obtained 

by summing the fa obtained from all iterations. We remark that the PGA algorithm is 

robust since it searches for a single peak for each row vector vm. Even if a peak location 

is mistakenly determined, it only causes a constant shift in A fa in (6.62), which may be 

corrected by (6.61). 
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kth scatterer 1 2 3 4 5 6 7 8 

Re{afc} 9.2643 -3.5000 4.4339 -2.1447 -1.4363 1.7064 1.1555 1.2068 

lm{ak} -4.9633 -9.6967 -1.4916 0.3269 -1.2229 -0.6923 -0.7064 -0.6122 

fk 0.1016 0.1406 0.1016 0.0078 0.1016 0.0312 -0.1328 0.0938 

fk -0.0293 0.0488 -0.0059 -0.0059 0.1191 -0.0215 -0.0371 -0.0684 

Table 6.1: True parameter values of the simulated tank. 
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Radar 

Figure 6.1: Data collection geometry in a spotlight-mode SAR. 
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kth. scatterer 

CRB1 

CRB2 

-2.13 

-3.32 

-7.78 

-11.19 

-2.28 

-3.13 

-9.58 

-9.72 

-9.85 

-11.04 

-9.48 

-9.58 

-11.15 

-11.24 

-8.62 

-9.54 

(a) 

kth scatterer 1 2 3 4 5 6 7 8 

CRB1 -74.71 -75.49 -67.94 -58.38 -60.77 -56.66 -57.97 -57.61 

CRB2 -74.80 -75.53 -67.98 -58.39 -60.85 -56.67 -57.98 -57.92 

CRB3 -68.31 -68.84 -66.75 -58.70 -61.30 -57.23 -58.92 -58.54 

CRB4 -68.43 -68.97 -66.88 -58.71 -61.38 -57.24 -58.94 -58.81 

(b) 

A;th scatterer 1 2 3 4 5 6 7 8 

CRB1 -44.20 -44.25 -44.16 -44.14 -43.87 -44.09 -44.07 -43.85 

CRB2 -67.11 -75.58 -59.51 -60.03 -60.52 -58.46 -57.98 -55.27 

CRB3 -65.83 -68.27 -57.61 -60.41 -60.19 -59.01 -58.81 -54.72 

CRB4 -66.10 -68.97 -58.71 -60.55 -61.23 -59.07 -58.88 -56.02 

(c) 

CRB1 CRB2 CRB3 CRB4 

-69.75 -69.86 -44.22 -69.88 

(d) 

Table 6.2: Comparison of the CRBs (in dB) of the target parameters for the simulated 

tank example, (a) CRBs of {ak} obtained by assuming the motion errors unknown (CRB1) 

and known (CRB2). (b) CRBs of {fk} and {/*}, obtained by assuming the motion errors 

unknown (CRB1 and CRB3, respectively) and known (CRB2 and CRB4, respectively), (c) 

CRBs of [fh] and {/*}, obtained by assuming the motion errors unknown (CRB1 and 

CRB3, respectively) and known (CRB2 and CRB4, respectively), (d) CRBs of 6 and 6, 

obtained by assuming the motion errors unknown (CRB1 and CRB3, respectively) and 

known (CRB2 and CRB4, respectively). 
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kth scatterer 

MSE1 

MSE2 

CRB 

5.03 

-2.95 

-2.13 

6.58 

-6.71 

-7.78 

1.76 

-2.56 

-2.28 

-5.64 

-9.39 

-9.58 

-2.29 

-8.72 

-9.85 

-5.36 

-9.45 

-9.48 

-8.44 

-11.50 

-11.15 

-7.86 

-9.20 

-8.62 

(a) 

kth scatterer 1 2 3 4 5 6 7 8 

MSE1 -58.67 -58.53 -59.18 -54.83 -52.04 -44.88 -56.04 -57.68 

MSE2 -69.72 -70.14 -67.11 -58.65 -61.44 -56.85 -59.05 -58.45 

CRB -68.31 -68.84 -66.75 -58.70 -61.30 -57.23 -58.92 -58.54 

(b) 

kth scatterer 1 2 3 4 5 6 7 8 

MSE1 -57.04 -56.37 -54.64 -54.81 -51.48 -47.00 -54.50 -49.15 

MSE2 -65.82 -68.49 -57.77 -60.86 -60.12 -58.56 -59.21 -54.92 

CRB -65.83 -68.27 -57.61 -60.41 -60.19 -59.01 -58.81 -54.72 

(c) 

5 6 

MSE1 -59.21 -10.54 

MSE2 -63.69 -42.36 

CRB -69.75 -44.22 

(d) 

Table 6.3: Comparison of the CRBs (in dB) of the parameters of the simulated tank with 

the MSEs obtained by PGA-RELAX (MSE1) and MCRELAX (MSE2). (a) For {ak}. (b) 

For {A}, (c) For {/,}. (d) For S and 5. 
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Begin 

SAR Phase History Data 

PGA for Motion Compensation 

RELAX for Feature Extraction 

Least Squares Phase Errors Estimation 

and Motion Compensation 

No 

Yes 

Target Features 

Stop 

Figure 6.2: The flow chart of the MCRELAX algorithm. 
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Wmr-* 

(a) 

Figure 6.3: Comparison of (a) the original image with (b) the image with added motion 

errors before motion compensation and the images with added motion errors after motion 

compensation obtained by (c) the PGA algorithm and (d) the MCRELAX algorithm by 

using the dashed lines in Figure 4. 
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Aperture Position 

(a) 

200 250 

50 100 150 
Aperture Position 

(b) 

Figure 6.4:  Comparison of the true phase errors (solid line) with their estimates (dashed 

line) obtained by (a) PGA and (b) MCRELAX. 
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Figure 6.5: Comparison of (a) the original image (with three embedded point scatterers) 

with (b) the image with added motion errors before motion compensation and the images 
with added motion errors after motion compensation obtained by (c) the PGA algorithm 

and (d) the MCRELAX algorithm by using the dashed line in Figure 6. 
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(b) 

Figure 6.6: Comparison of the true phase errors (solid line) with their estimates (dash line) 

obtained by (a) PGA and (b) MCRELAX. 
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-0.5     -0.5 -0.5     -0.5 

(c) (d) 

(e) 

Figure 6.7: The simulated tank example with M = M = 32 and o1 = 20. (a) True \ak\ ^ 

fk and fk. (b) \a(f,f)\ with added motion errors vs. / and /. (c) \&{fj)\ vs. / andf 

obtained by PGA. (d) |dfc| vs. fk and fk obtained by PGA-RELAX, (e) \&k\ vs. fk and fk 

obtained by MCRELAX. 133 



7.    Autofocus and Super Resolution SAR Image Formation 

7.1    Introduction 

Synthetic aperture radar (SAR) can produce high resolution images of targets or scenes 

of interest by transmitting signals with large bandwidths and utilizing the relative motion 

between the radar and the objects to be imaged. Since its invention in the early 1950's [1], 

SAR imaging technology has now been widely used in many military and civilian applications 

[2]. Conventional SAR has two common imaging modes, i.e., stripmap vs. spotlight modes. 

The stripmap mode is more efficient when used for coarse-resolution mapping of large regions, 

while the spotlight mode is a practical choice for fine-resolution imaging of localized areas. 

Major technical issues associated with SAR imaging include motion compensation and image 

formation. In this chapter, we will address the issue of autofocus and super resolution image 

formation from spotlight-mode SAR data in the presence of uncompensated phase errors 

across the synthetic aperture. 

The ideal data collection geometry for the spotlight-mode SAR imaging is called "turntable 

imaging" where a stationary radar illuminating a uniformly rotating object [3] at a fixed dis- 

tance. Fine cross-range resolution is obtained by utilizing the Doppler frequency gradient 

generated by the relative rotational motion between the object and the radar. In turntable 

imaging, the distance between the radar and the rotational axis of the object to be imaged is 

fixed. However, for airborne or spaceborne SAR, it is not easy to keep the distance between 

the radar and the scene center (or the reference point used for dechirping) a constant or 

to have an exact knowledge about their relative distances. Any uncertainty in the relative 

distance will produce a demodulation timing error which will result in a range shift and 

a phase error in the range-compressed data. With modern advanced onboard integrated 

navigation systems, including inertial measurement units (IMUs), the Global Positioning 

System (GPS), and the ring laser gyro technology, the amount of range shift is typically a 

small fraction of a range resolution cell [4] and hence can be ignored. However, the phase er- 

ror across the synthetic aperture is usually large enough to blur SAR images. In addition to 
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the platform position uncertainty, propagation through atmospheric turbulence [5] or system 

phase instability will also produce phase errors across the synthetic aperture. Usually, the 

platform position uncertainty will produce low-frequency phase errors while the propagation 

and system instability will induce phase errors that generally have a high-frequency content. 

Improving the accuracy of the navigation systems is cost expensive and can only deal 

with phase errors due to the platform position uncertainty. Instead, autofocus algorithms, 

which derive phase errors directly from collected phase history data, offer an attractive 

alternative to remove the phase errors independent of the error source. Many autofocus 

algorithms have been proposed in the SAR literature, (see, for example, [6, 7, 8, 9, 10, 

11, 12, 13, 14, 15, 16, 17]), for correcting phase errors across the synthetic aperture. A 

two subaperture-based approach, referred to as Map Drift, was proposed in [6] to estimate 

quadratic phase error coefficients by finding the peak of the cross-correlations between the 

two low-resolution intensity images formed using the two subapertures. Map Drift is very 

simple and computationally efficient but can only compensate quadratic phase errors. Mul- 

tiple subaperture-based approaches were proposed in [7, 8, 9], which are the extensions of 

Map Drift to estimate high-order polynomial phase errors. However, the order of the phase 

error polynomials is still very limited because the higher the order, the more the subaper- 

tures needed, and hence the narrower the subapertures, and in turn, the cross-correlations 

of the resulting low-resolution images yield less accurate estimates of the polynomial coef- 

ficients. Another subaperture-based algorithm, referred to as the the phase difference (PD) 

algorithm, was proposed in [10] to compensate quadratic phase errors. PD and Map Drift 

differ in the manner in which they manipulate the subaperture data to yield the estimates of 

phase polynomial coefficients. PD obtains the error estimates from the non-coherent average 

(across range) of the Fourier transform of the conjugate product of the range-compressed 

data from the two subapertures. Unlike other subaperture-based algorithms [6, 7, 8, 9], PD 

is non-iterative. PD can also be extended to multiple subapertures in the way similar to that 

used in [7, 8, 9]. However, like [7, 8, 9], its capability to handle high-order phase errors is 

still very limited. A very robust algorithm, referred to as phase gradient autofocus (PGA), 

was first proposed in [11] and later refined in [12, 13].   PGA is based on inverse filtering 
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[4] but takes advantage of the redundancy of the phase error function by averaging across 

many range cells. Unlike the above subaperture-based algorithms [6, 7, 8, 9, 10], PGA is 

not model-based and hence can be used to estimate any high order phase errors. It has 

been shown in [14] that PGA is very robust over a variety of scene content and phase er- 

ror distributions. However, fully automatic SAR image autofocus using PGA may be risky 

in some special cases [16] since the performance of PGA is sensitive to the choice of the 

threshold needed by the automatic windowing step or the size reduction rate needed by the 

progressive windowing scheme. Moreover, PGA suffers from error accumulation across the 

aperture. Prominent point processing (PPP) was also proposed for the autofocus of SAR 

images [15, 18]. Like PGA, PPP is not based on the modeling of phase errors. However, 

PPP relies heavily on the existence of isolated dominant scatterers, which is rarely met in 

practice. A good review of the above algorithms can be found in [18]. As pointed out in [18], 

comparison and evaluation of the above algorithms are made difficult by the fact that per- 

formance generally varies with scene content and phase error characteristics. For example, 

the single PPP algorithm is more robust than any other aforementioned algorithms against 

high-order phase errors but is more sensitive than any other algorithms to the scene content. 

It seems that PGA makes a good tradeoff between the robustness over scene content and 

phase error distributions. 

In [17], a fully parametric algorithm, referred to as MCRELAX, was proposed for simul- 

taneous autofocus and target feature extraction. MCRELAX assumes a two-dimensional 

(2-D) sinusoidal model for the target signal but assumes nothing (arbitrary unknowns) for 

the phase error distribution. MCRELAX is an alternating optimization approach to a nonlin- 

ear least-squares (NLS) fitting criterion that uses RELAX [19] for target feature extraction. 

To speed up the convergence, PGA is used in MCRELAX to provide the initial phase er- 

ror estimates. When PGA fails to provide a reliable initial condition, MCRELAX may not 

converge or converge very slowly to a good solution. In addition, since MCRELAX uses all 

target scatterers to estimate both the phase errors and target features, when the size of the 

scene to be imaged is large, MCRELAX becomes computationally too expensive. 

In this chapter, an autofocus algorithm, referred to as MCCLEAN, is proposed for cor- 
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recting synthetic aperture phase errors in SAR. It is a parametric algorithm based on the 

same data model as used in MCRELAX. The computational core of the algorithm is the 

CLEAN algorithm [20, 19], which involves only a sequence of 2-D FFT operations. Like 

the single PPP algorithm, MCCLEAN is more robust than any other algorithms against 

high-order phase errors. However, MCCLEAN does not rely on the existence of isolated 

dominant scatterers as the single PPP algorithm does. Compared to MCRELAX [17], MC- 

CLEAN has better convergence property (no separate initialization step is required) and 

is computationally much more efficient when used as an independent autofocus approach 

for the SAR imaging of a large scene. For certain kinds of scene content and phase error 

distributions, MCCLEAN performs better than the well-known PGA algorithm. We also 

present a modified relaxation based algorithm, which has a similar structure as MCCLEAN, 

for simultaneous autofocus and super resolution target feature extraction of a small scene 

or small region of interest (ROI) in a large scene. Super resolution SAR images can then be 

formed from these estimated target features by using data extrapolation and FFT [21]. 

The remainder of the chapter is organized as follows. In Section 7.2, we derive the 

data model and formulate the problem of interest. Some preparations and the MCCLEAN 

algorithm are presented in Sections 7.3 and 7.4, respectively. Several experimental examples 

are provided in Section 7.5 to illustrate the performance of MCCLEAN. Finally, Section 7.6 

contains our conclusions. 

7.2    Data Model and Problem Formulation 

A broadside data collection geometry in a spotlight-mode SAR is shown in Figure 7.1. 

The XYZ coordinate system is centered on a small patch of ground, where a target is located. 

The coordinate origin is referred to as the scene center or reference point. The angle 9 and 

</> denote the azimuth and elevation angles, respectively, of the radar relative to the XYZ 

coordinate system. The distance between the radar and the scene center is denoted by R0. 

The ground is illuminated by a narrow beam from the moving radar that moves along the 9 

direction but with <j) and R0 fixed. In Figure 7.1, R denotes the distance between the radar 

and a scatterer at the position (x,y,z). 
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The range R of the scatterer located &t(x,y,z) can be written as 

1    Icy 

R= [{R0 cos 6 cos (j) - x)2 + {Ro sin 9 cos (p-y)2 + (Ro sin (f>-z)2]     . (7.1) 

When the distance from the radar to the target is much larger than the size of the target 

(i_e#) — <C1,T|-<1,T§-<C1) and 9 is very small, a good approximation of R can be found 

by using the Taylor series expansion, which has the form [17] 

R 7a R0 - x cos 6 cos <j> - y sin 9 cos <j>, (7.2) 

where 

and 

,     x2 sin2 (f) + y2 + z2 cos2 <p-xzsin2</) .    . 
£ = £ + z tan 0 ■TZZ 7 > \'-6) 

2Ro cos <p 

xycos<f) + yzsin(t> ,    .. 
y = y + 5 • vA> 

■Ko 

Note that the second term of the right side of (7.3) is due to the range layover of the scatterer 

with non-zero height z [4]. The third term of the right side of (7.3) and the second term of 

the right side of (7.4) are due to the range curvature effect [4]. 

The range resolution of a radar is determined by the radar bandwidth. To achieve 

high resolution in range, the radar must transmit wideband pulses, which are often linear 

frequency modulated (FM) chirp pulses. A normalized chirp pulse can be written as 

s{t) = exp [j(2irf0t + njt2)] ,    \t\ < T0/2, (7.5) 

where /0 denotes the carrier frequency, 7 denotes the chirp rate, and T0 denotes the pulse 

width. At look angle 9, the signal returned by a scatterer located at (x, y, z) has the form 

{/      2/?\ /      1R\' 
j\27rf0(t-—j+7T7(t-—j 

where t denotes the fast time, öXtyjZ is determined by the radar cross section (RCS) of the 

scatterer, and c denotes the speed of light. 

In practice, a dechirp-on-receive approach is used to considerably reduce the sampling rate 

requirement of the A/D converters [4, 18]. The dechirped signal d(t, 9) is obtained by mixing 
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r{t, 6) with a reference signal exp {-j[27r/0(t - ^) + Try{t - ^f1)2]}, which is the conjugate 

of the normalized received signal of the scene center. Since the term exp [j^-(R - Ro)2] is 

usually close to a constant, hence it can be ignored or partially removed [22, 18]. In this 

case, d(t, 6) has the form 

d(t,e) = Sx,y,zeW{-j^[f0 + ^(t-2-f)](R-Ro)}. 

Inserting R in (7.2) into (7.7), we have 

d{t, 6) = 5x>VtZ exp [j{xtx + yty)], 

(7.7) 

where 

and 

_ 47T A + tft-f1) cos 4> cos 6, 

(7.8) 

(7.9) 

47T 
7,    — y       c /O + TC*-^)1 cos ^ sin 0. (7.10) 

Note that d(t, 9) in (7.8) is a 2-D sinusoidal signal. The frequency pair of the 2-D sinusoid 

corresponds to the 2-D location {x, y} of the scatterer, while the amplitude is proportional 

to its RCS. Note that (x, y) is the ambiguous location due to the layover and range curvature 

effects [4] and is not the true location (x,y,z) of the scatterer. The range curvature effect 

can be neglected for large Ro- However, this 2-D SAR imaging system cannot distinguish the 

scatterers located at (x, y, z) and (x, y, 0) and combines these scatterers into one scatterer. 

The scatterers we referred to below are those resulted from such combinations. 

When a target has multiple scatterers with distinct (x, y), d(t, 6) in (7.8) will be a sum of 

sinusoids. The 2-D locations and RCS's of the target scatterers are the 2-D target features. 

Since usually the samples on the t and 8 axes are uniformly spaced, the samples of tx and 

ty occur at the points of a polar grid. Hence Polar-to-Cartesian interpolation (referred to as 

polar reformatting) is needed for the samples of tx and ty to occur at rectangular grid points 

[22]. After polar reformatting, the signal reflected by a radar target that consists of K 2-D 
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point scatterers in an ideal SAR system can be described as: 

s(m,m) = f>fcexp[j27r(m/fc + m/fc)],    m = 0,1, • • • ,M - 1,    m = 0,1, • • • ,M - 1, 

(7.11) 

where the complex amplitude ak and the 2-D frequency pair {fk, fk}, respectively, are pro- 

portional to the radar cross section (RCS) and the 2-D location (range and cross-range) of 

the kth scatterer of the target, and M and M denote the numbers of the available data 

samples in range and cross-range, respectively. 

In the derivations of the above data model, we have assumed that the radar moves along 

the 6 direction with Ro known exactly. For a practical airborne or spaceborne SAR system, 

however, the distance between the moving radar and the reference point may not be known 

exactly due to platform position uncertainty [4]. Also, the round-trip time delay between 

the radar and the target may be somewhat random due to atmospheric turbulence [5], which 

has the same effect on SAR imaging as when RQ is in error. For a given 0, let ARQ(9) 

denote the unknown distance error between the radar and the reference point. ARo(6) will 

result in a shift and a constant phase error in the range compressed data corresponding to 

the look angle 6. The shift amount is typically a small fraction of the range resolution cell 

[4] and hence can be ignored. However, since /0 tends to be very large in practical SAR 

systems, even a small ARQ(9) would cause a large phase error across the synthetic aperture. 

By neglecting the effect of polar reformatting, the signal obtained by a realistic SAR system 

can be described as 

y(m, fh) = s(m, fh) exp (jipm) + e(m, fh), (7.12) 

where {^m}m=o are the Phase errors due to unknown ARQ(6) and system instability and 

e(m, fh) denotes the unknown noise. Let Y and E denote the M x M matrices whose mmth 

elements are y(m,rh) and e(m,fh), respectively. Let 

P(#) =diag| exp(j^o),   exp(^x),   •••,   exp(j^M-i)}' (7-13) 

and 

WM(A)=    1   exp(j2nfk)   •••   exp [J2TT(M - l)fk] 
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where (-)T denotes the transpose and 

r lr 

Then (7.12) can be written in the following matrix form: 

Y = £ afcu>M(A)ü&(/fc)P(*) + E. (7.16) 

Our problem of interest herein is to estimate * from Y in (7.16) for autofocus or both * 

and {ak, fk, fk}k=1 for simultaneous autofocus and super resolution SAR image formation. 

7.3    Preparations 

The estimates lak, fk, fk\      and #, respectively, of {ak, fk, fk}k=l and * can be ob- 

tained by minimizing the following NLS criterion: 

K 2 

(7.17) 
F 

Ci({*k,h,h}K
k=1,*) =   Y - E afcWM(/fc)«£(Ä)P(*) 

where || • ||j? denotes the Frobenius norm. It has been shown [19] that the NLS estimates so- 

obtained are statistically very accurate for both white and colored noise e(m,fh). However, 

the minimization of (7.17) is a very complicated optimization problem. The alternating min- 

imization approach can be used for the above optimization problem, which repeats the two 

steps of phase error estimation as well as compensation and target feature extraction. Below 

we briefly describe the above two steps, which will lay down the basis for the presentation 

of our MCCLEAN algorithm. 

Phase Error Estimation and Compensation 

Assume that {ak,fk,fk\ are given. Let S denote the matrix whose mmth element 

is s(m,m), where s(m,m) is the same as s(m,fh) in (7.11) except that {ak, fk,fk}k=i are 

replaced by {ak, fk, /fc}f=1. Let ym and sm, respectively, denote the mth columns of Y and 

S. Then minimizing Cx in (7.17) with respect to * becomes minimizing 

M-l 
|2 

c2 (*) = E lly* - §-exP O'WII2. (7-18) 
fh=0 

141 



Af-1 
where || • || denotes the Euclidean norm, which gives the estimates of {/i/,m}m=0

: 

$A = angle{s?ym} ,    m = 0,1, • • -,M - 1, (7.19) 

where ^ is the (m + l)th element of #, angle(x) denotes the phase of x, and (-)H denotes 

the conjugate transpose. 

Once the phase error estimates * are obtained, phase error compensation can be done 

very easily. Let Z be the data matrix phase compensated by using P(¥), where P(*) is the 

same as P(¥) in (7.13) except that * is replaced by *, i.e., 

Z^YP-1^). (7.20) 

Since P(4>) is a unitary matrix, minimizing Ci in (7.17) is equivalent to minimizing the 

following cost function 

C3 ({
a*»A'/*}fc=1J 

K 

Z-J2 aku3Mtfk)uTM{fk) (7.21) 

which becomes a standard NLS target feature extraction problem. 

Feature Extraction 

The target feature estimates \ak, fk, fk\ _ of {ak, fk, fk\k=1 can be obtained by mini- 

mizing C3 in (7.21) via the relaxation-based approaches, such as CLEAN [19, 20] or RELAX 

[19]. Before we summarize the two algorithms for later use, let us first present the following 

preparations. 

Assume 

terers. Let 

\ &i, ft, fi \ are given, where K denotes the intermediate number of scat- 

K 

Zfc = Z-     Yf    ÜiVMifovüifi)- 
i=l,i^k 

(7.22) 

o _ 

Then minimizing   Zfc - aku>M(fk)u>ü(fk) p with respect to ak, fk, and fk yields [19] 

(A,/*) = arg max WM(/*)
Z

*
W

J&(/*) 
UkJk) 

and 

ak 
u>%{fk)ZkH>h{h) 

MM 

(7.23) 

(7.24) 
fk=fkJk—fk 
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Note that fk and fk in (7.23) can be obtained as the location of the dominant peak of the 

2-D periodogram |c^(/fc)Zfeu^(/fc)|
2 /(MM), which can be efficiently computed by using 

2-D FFT (fast Fourier transform) with the data matrix Zk padded with zeros. Then ak is 

easily computed from the complex height of the peak of u)^(fk)Zk^{fk)/{MM). 

With the above preparations, now we summarize the CLEAN and RELAX algorithms. 

Summary of the CLEAN Algorithm 

Step (1): Assume K=l. Obtain Uufi} and &i from Z by usinS (7-23) and (7-24)' 

respectively. 

Step (2): Assume K = 2. Obtain Z2 with (7.22) by using fu fx, and &i obtained in 

Step (1). Obtain {/2,/2} and a2 from Z2 by using (7.23) and (7.24), respectively. 

Step (3): Assume K = 3. Compute Z3 with (7.22) by using {fuü&i}^ obtained in 

Step (2). Obtain |/3,/3| and a3 from Z3. 

Remaining Steps: Continue similarly until K — K. 

Summary of the RELAX Algorithm 

Step (1): Assume K=l. Obtain Ifuh) and ax from Z by using (7.23) and (7.24), 

respectively. 

Step (2): Assume K = 2. Obtain Z2 with (7.22) by using fu /1; and &i obtained in 

Step (1). Obtain {/2,/2} and &2 from Z2 by using (7.23) and (7.24), respectively. Next, 

compute Zi with (7.22) by using /2, /2, and a2 and redetermine |/i,/i} and «i from Zi- 

Iterate the previous two substeps until "practical convergence" is achieved (to be dis- 

cussed later on). 

Step (3): Assume K = 3. Compute Z3 with (7.22) by using {£,/*,äü}?=i obtained in 

Step (2). Obtain |/3,/3} and &3 from Z3. Next, compute Zi with by using {Lfi^iYi^ 

and redetermine {/i,/i} and &i from Zx. Then compute Z2 by using {/i,/<, «i}«=i,3 and 

redetermine I f2, f2 \ and a2 from Z2. 

Iterate the previous three substeps until "practical convergence". 

Remaining Steps: Continue similarly until K = K. 
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The "practical convergence" in the iterations of the above RELAX algorithm may be de- 
■ ft "   "~   - \K \ termined by checking whether the relative change (e) of the cost function C3 I ifk, fk, a>kt _ J 

in (7.21) between two consecutive iterations is less than some threshold (say, 10~3). 

We remark that CLEAN is not a super resolution algorithm but RELAX is [19]. CLEAN 

is computationally more efficient than RELAX but its resolution and estimation accuracy 

are inferior to RELAX [19]. Yet we have found that for the purpose of autofocus of a large 

scene by using a small number of dominant scatterers only, using CLEAN and RELAX yields 

similarly focused SAR images. Hence we choose to use CLEAN in the autofocus algorithm 

to be presented in Section 7.4. 

7.4    The MCCLEAN Algorithm 

Usually, the number of scatterers needed to provide satisfactory phase error estimates is 

much smaller than the true number of scatterers in a SAR image, especially for a large scene. 

For a large scene, we can assume a small K to estimate the phase errors. The focused SAR 

image of the whole scene can then be formed by applying FFT to the phase compensated 

data. Since the FFT image of the so-obtained whole scene is usually well focused, we can cut 

out some small regions of interest (ROIs) for further autofocus and super resolution image 

formation. This two-layer processing scheme seems more reasonable in practice. 

The flow chart of the proposed algorithm is shown in Figure 7.2, which is quite different 

from that of MCRELAX [17]. Note that in Figure 7.2, instead of two separate steps of 

phase error estimation and compensation and feature extraction of all K scatterers as used 

in MCRELAX, the new algorithm estimates both the phase errors and target features via 

an incremental refinement procedure. In other words, the estimates of both the phase errors 

and target features are steadily improved by increasing the number of intermediate scatterers 

K from 1 to some desired number (automatically determined by the algorithm). Before we 

present the steps of MCCLEAN, let us copy and define some notations: 

K: counter of the number of outer iterations (also the number of intermediate scatterers); 

I: counter of the number of inner iterations; 
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Z: M x M matrix denoting the compensated phase history data; 

A*^(J): Mxl vector denoting the incremental phase error estimates for the Ith inner 

iteration of the Kih outer iteration; 

A*^: Mxl vector representing the incremental phase error estimates accumulated 

within the .fifth outer iteration. 

With the above preparations, the MCCLEAN algorithm can be summarized as follows: 

Step 0: Let Z = Y. 

Step 1: Assume K — 1. 

Substep (a): Obtain |/fc, fk, ak\ _ by using Step (1) of CLEAN and then let 7=1. 

Substep (b): Estimate the incremental phase error A*i(J) and then let Z = ZP-^A&xil)). 

Substep (c): Re-estimate lfk,fk,&k\      via CLEAN by assuming K = K. 

Substep  (d):   If the inner convergence (to be discussed later on) is achieved, then let 

A*! = £)[=1 A*i(i) and go to the next step; otherwise, let / = I + 1 and then go to 

Substep 1(b). 

Substep (e): If the outer convergence (to be discussed later on) is achieved, then go to the 

Final Step; otherwise, go to the next step. 

Step 2: Assume K = 2. 

Substep (a): Obtain lfk, fk, ak\ _  by using Step (2) of CLEAN and then let I = 1. 

Substep (b): Estimate the incremental phase error A*2(/) and then let Z = ZP_1(A*2(7))- 

Substep (c): Re-estimate Uk,fk^k> _  via CLEAN by assuming K = K. 

Substep (d): If the inner convergence is achieved, then let A*2 = £f=i A*2(0 and go to 

the next step; otherwise, let I = I + 1 and then go to Substep 2(b). 

Substep (e): If the outer convergence is achieved, then go to the Final Step; otherwise, go 

to the next step. 

Step 3: Assume K — 3. 

Substep (a): Obtain lfk, fk, ak)      by using Step (3) of CLEAN and then let / = 1. 

Substep (b): Estimate the incremental phase error A*3(J) and then let Z = ZP    (A*3(/)). 

Substep (c): Re-estimate ifkJk,&k\ _  via CLEAN by assuming K = K. 
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Substep (d): If the inner convergence is achieved, then let A*3 = £[=i A*3(z) and go to 

the next step; otherwise, let / = 1+ 1 and then go to Substep 3(b). 

Substep (e): If the outer convergence is achieved, then go to the Final Step; otherwise, go 

to the next step. 

Continuing Steps: Continue similarly by increasing K until the outer convergence is 

achieved. 

Final Step: Form the focused SAR images of the whole scene by applying FFT to the 

phase compensated data. 

The number of scatterers used by MCCLEAN to estimate the phase errors is determined 

by the algorithm automatically as follows. After the convergence of MCCLEAN at Step K, 

the phase error estimate *£ of * is 

The inner or outer convergence can be determined by checking the contribution of the current 

incremental phase error estimates to the current phase error estimates for each inner or outer 

iteration, respectively. Consider, for example, Step K of the above MCCLEAN algorithm. 

After / inner iterations, we calculate 

e. m - H A** A T , (7.26) 

which is the ratio of the norm of the vector denoting the current incremental phase error 

estimates to that of the current phase error estimates. If tk{I) is less than some threshold 

value, say e^, then we declare that the inner convergence is achieved. (In our experimental 

examples, we use a variable threshold ek = 0.1/K to speed up the convergence of MC- 

CLEAN.) After the inner convergence with I inner iterations, the accumulated incremental 

phase error estimates for Step K is 

I 

A** = £A**(i), (7-27) 

and the ratio of the norm of the vector denoting the accumulated incremental phase error 
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estimates within Step K to that of the current phase error estimates is 

II A* - II2 

e(K) = " A   * "  ■ (7.28) 1   '        II** II2 

If e{K) is less than some threshold value, say e0, then we declare that the outer convergence 

is achieved. (In our experimental examples, we use e0 = 0.01.) 

We remark that MCCLEAN is a highly automatic approach and it is more robust than 

any other existing algorithms against high-order phase errors. When the target contains 

several dominant scatterers (not necessarily well isolated strong dominant scatterers), MC- 

CLEAN is a very effective autofocus algorithm. 

Other algorithms can also be constructed from Figure 7.2 by changing the feature extrac- 

tion methods and converge control strategies for the inner and outer iteration loops. If we 

use the same converge control strategy but only replace the CLEAN algorithm in Substep 

(c) of each step of MCCLEAN with RELAX, we obtain a new algorithm. Yet we prefer 

using CLEAN since CLEAN is computationally more efficient than RELAX and when only 

a small number of scatterers are used for estimating the phase errors, CLEAN has simi- 

lar performance as RELAX. This does not contradict the fact that RELAX outperforms 

CLEAN in estimation accuracy and resolution capability since when there are closely spaced 

scatterers, RELAX usually will revisit those unresolved scatterers when the assumed num- 

ber of scatterers is quite large or close to the true number of scatterers. Hence, when the 

number of scatterers used for autofocus is much smaller than the true number of scatterers 

in a large scene, using CLEAN and RELAX yields similar results. The smaller the number 

of scatterers we use, the faster the autofocus algorithm. 

For some applications, we may wish to achieve simultaneous autofocus and super reso- 

lution SAR image formation of a small scene or small ROI in a large scene. For this case, 

we will extract the target features with RELAX rather than CLEAN. Also, instead of using 

the ad hoc criterion of checking the phase error estimates to determine the inner and outer 

convergences, we check the NLS fitting criterion in (7.17) to test practical convergences [19]. 

This is because the goal of the relaxation based methods is to minimize the NLS fitting 

criterion in (7.17).  The algorithm we present below is referred to as MCRELAX1, whose 
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structure resembles MCCLEAN rather than the original MCRELAX algorithm presented in 

[17]. The steps of MCRELAX1 are as follows: 

Step 0: Let Z = Y. 

Step 1: Assume K = 1. 

Substep (a): Obtain {fk,fk,&k)      via RELAX by assuming K = 1. 

Substep (b): Estimate the phase error 4f and then let Z = YP_1(*)- 

Substep (c): Re-estimate <fk, fk, &k\      via RELAX by assuming K = K. 

Substep (d): If the practical convergence is achieved (to be discussed later on), then go to 

the next step; otherwise, go to Substep 1(b). 

Step 2: Assume K = 2. 

Substep (a): Obtain {/*, fk, ak\      by using the first substep of Step (2) of RELAX. 

Substep (b): Re-estimate the phase error * and then let Z = YP_1(*). 

Substep (c): Re-estimate |/fc, fk, ak\      via RELAX by assuming K = K. 

Substep (d): If the practical convergence is achieved (to be discussed later on), then go to 

the next step; otherwise, go to Substep 2(b). 

Step 3: Assume K — 3. 

Substep (a): Obtain {/*, fk, ak\      by using the first substep of Step (3) of RELAX. 

Substep (b): Re-estimate the phase error 4> and then let Z = YP_1(*)- 

Substep (c): Re-estimate {/*,/*,&*}      via RELAX by assuming K = K. 

Substep (d): If the practical convergence is achieved (to be discussed later on), then go to 

the next step; otherwise, go to Substep 3(b). 

Continuing Steps: Continue similarly until K = K, where K is the estimate of K and 

may be estimated with the following generalized Akaike information criterion (GAIC) (see 

[19]). 

Final Step: Use the super resolution target feature estimates to extroplate the target 

signal [21] and then apply FFT to form super resolution SAR image. 

The practical convergences of RELAX and MCRELAX1 may be determined by checking 

whether the relative changes of the cost function C3 I Uk,fk,akj ^  1 in (7.21) and the 
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GAIC* = MMln    £  E |e(m,m)|2    +7ln[ln(MM)](4K + M + l), (7.29) 

cost function Cx (UkJk,fk\      ,4f] in (7.17) (where K is replaced by K), respectively, 

between two consecutive iterations are less than some threshold (say, 10~3). 

We consider using MCRELAX1 with the GAIC (see [19] and the references therein for 

details) to determine K, the number of target scatterers, by assuming the unknown noise 

and clutter being white. The estimate K of K is determined as an integer that minimizes 

the following GAIC cost function: 

EE 
where e(m, m) is determined by 

e(m, m) = y(m, fh)-J2&k exp j2ir(mfk + mfk) exp(j^m), (7.30) 
fc=i L 

AK + M + 1 denotes the total number of unknown real-valued parameters (of which AK are 

for the target features, M are for the phase errors, and 1 is for the white noise), and 7 is a 

parameter of user choice. 

We remark that, although MCRELAX1 looks more complicated than MCRELAX, the 

former has better convergence property than the latter since the former does not depend on 

other methods to generate initial conditions. 

7.5    Experimental Examples 

In this section, we present two experimental examples to illustrate the performance of 

the proposed MCCLEAN and MCRELAX1 algorithms. The imaged scene is the Michigan 

Stadium and the experimental data is a portion of the data collected by one of the two 

apertures of the ERIM's (Environmental Research Institute of Michigan's) DCS IFSAR 

(interferometric SAR). These data have already been motion compensated by some unknown 

means and phase errors are artificially added to them so as to test the autofocus performance 

of the proposed algorithms. All of the windowed FFT images given below are obtained by 

applying 256 x 256 point 2-D FFT with Kaiser window and shape parameter 6 to the original 

or compensated phase history data. 
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First, we show the autofocus capability of MCCLEAN for a large scene. The original 

phase history data Y is a 256 x 256 matrix (i.e., M = M = 256). The added phase error 

distribution is fa = ***$&■ (m - f)' + f W(fh), where m = 0,1, • • •, M - 1 and W(m) 

is uniformly distributed on the interval [-1 1]. Note that the phase errors are composed 

of a low-frequency content (quadratic) and a high-frequency content (white). The original 

and corrupted windowed FFT images are shown in Figures 7.3(a) and (b), respectively. The 

windowed FFT image after autofocus via MCCLEAN is shown in Figure 7.3(c), which is 

very close to the original image shown in Figure 7.3(a). For the MCCLEAN algorithm, we 

have used e^ = O.l/K and e0 = 0.01 to test the inner and outer convergences, respectively, 

and the number of scatterers used for estimating the phase errors is 46. 

Next, we show the simultaneous autofocus and super resolution imaging capability of 

MCRELAX1. A small region of interest was cut out from the top left corner of Figure 

7.3(c), which has already been focused by using MCCLEAN. The ROI is 2-D inverse Fourier 

transformed and then dewindowed to generate the corresponding phase history data. The 

phase history data Y of the ROI is now a 40 x 40 matrix (i.e., M = M = 40). For the 

purpose of comparison, a corresponding ROI was also cut out from Figure 7.3(a) to serve 

as the original image to be compared with. The original unwindowed and windowed FFT 

images and the corresponding super resolution image obtained via RELAX [21] are shown 

in Figures 7.4(a), (b), and (c), respectively. Figure 7.4(d) shows the focused windowed 

FFT image of the ROI from Figure 7.3(c). The super resolution images corresponding to 

Figure 7.4(d) obtained via RELAX and MCRELAX1 are shown in Figures 7.4(e) and (f), 

respectively. Note that both Figures 7.4(e) and (f) have higher resolution than the image 

shown in Figure 7.4(d) and Figure 7.4(f) is closer to the original super resolution image 

shown in Figure 7.4(c) than Figure 7.4(e). In this example, we have used the GAIC criterion 

[19] with 7 = 4 to estimate the number of scatterers K of this ROI, which yields K = 59, 

and for the super resolution image formation, we have used 2.0 for the data extroplation 

factor [21]. 

We have also tried the well-known PGA algorithm for the above two examples and found 

that its performance is very sensitive to the choice of the threshold needed by the automatic 
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windowing step or the size reduction rate needed by the progressive windowing scheme. We 

must also make a choice between automatic windowing and progressive windowing. When 

appropriate windowing scheme and proper parameters are selected, PGA can also be used 

to generate very good focused SAR images. 

7.6    Conclusions 

In this chapter, a parametric algorithm, referred to as MCCLEAN, is proposed for the 

autofocus of SAR image of a large scene, which can handle arbitrary phase errors. It is 

highly automatic and no separate initialization step is needed. We also present a similarly 

structured algorithm for the simultaneous autofocus and super resolution image formation 

of a small scene or small region of interest in a large scene. Experimental examples have 

been used to demonstrate the effectiveness of the proposed algorithms. 
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Figure 7.1: Data collection geometry in a spotlight-mode SAR. 
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Figure 7.2: Flow chart of the MCCLEAN algorithm. 
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Figure 7.3: SAR image of the Michigan Stadium, (a) Original windowed FFT image, (b) 

Image corrupted by phase errors, (c) The windowed FFT image after autofocus via MC- 

CLEAN. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 7.4: SAR image of a small region of interest out of the Michigan Stadium data, 
(a) Original unwindowed FFT image, (b) Original windowed FFT image, (c) Original 
super resolution image obtained via RELAX, (d) Windowed FFT image after autofocus via 
MCCLEAN (for large scene autofocus). (e) Super resolution image obtained via MCCLEAN 
(for large scene autofocus) plus RELAX, (f) Super resolution image obtained via MCCLEAN 
(for large scene autofocus) plus MCRELAX1. 
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8.     Super Resolution SAR Imaging via Parametric 
Spectral Estimation Methods 

8.1    Introduction 

The conventional fast Fourier transform (FFT) method is a nonparametric spectral es- 

timation approach and is robust and computationally very efficient for synthetic aperture 

radar (SAR) image formation. However, the FFT method generates SAR images with high 

sidelobes and poor resolutions due to the limited phase history data collected from a finite 

length synthetic aperture with a finite bandwidth radar. To reduce the sidelobes, different 

window functions can be applied to the SAR phase history data before FFT processing. 

Yet this is achieved at the cost of worsening the resolution. In [1, 2], many nonparametric 

and parametric spectral estimation methods are compared and discussed for their merits 

for SAR image formation. The nonparametric methods that have been used for SAR image 

formation and target feature extraction include, for example, reduced-rank variations of the 

Capon method [1, 2, 3, 4], the adaptive sidelobe reduction approaches [5], and the matched- 

filterbank based complex spectral estimation methods [6] including the Capon [7] and APES 

[8] methods. Yet the resolution of these nonparametric methods is not significantly better 

than that of the FFT based methods due to their nonparametric nature. 

Parametric spectral estimation algorithms, which can be attractive alternatives to non- 

parametric methods, have been used extensively for SAR target feature extraction. The 

parametric methods that have been considered include, for example, autoregressive (AR) 

model based methods [1, 2, 9, 10], eigendecomposition based methods [1, 2, 3, 4, 11] in- 

cluding MUSIC [12] and ESPRIT [13], and nonlinear least squares fitting based methods 

[1, 2, 14, 15]. The parametric spectral estimation methods are devised based on certain 

parametric data models, mostly on sinusoidal data models to model ideal point scatterers. 

Robust parametric methods offer the promise of significantly improving the resolution and 

accuracy of the FFT methods. Since SAR images rather than target features are often used 

in SAR applications, we consider herein first extracting the target features from the SAR 

phase history data with the parametric methods and then forming SAR images by applying 

157 



the FFT methods to the simulated phase history data matrices of large dimensions. The 

simulated data matrices are based on the extracted features and the assumed data models. 

The dominant target features of the so-obtained SAR images can have a much better reso- 

lution than those obtained with the FFT based methods. Since the parametric data models 

are usually approximate, parametric methods robust against model errors should be used to 

extract target features. 

In this chapter, we extend robust and high resolution relaxation-based parametric spectral 

estimation algorithms RELAX [14] and RELAX-NLS [15], which have been used effectively 

for SAR target feature extraction [14, 15], to SAR image formation and evaluate their per- 

formances with experimental data including the MSTAR and ERIM data. The RELAX 

algorithm assumes that SAR targets consist of only point scatterers, i.e., trihedral corner 

reflectors. The RELAX-NLS algorithm assumes that the SAR targets consist of both trihe- 

dral and dihedral corner reflectors. Although sinusoidal point scatterer data model tends to 

work well in range, it is more difficult to establish an approximate parametric data model 

in cross-range. The RELAX algorithm assumes a sinusoidal data model in cross-range as 

well while the RELAX-NLS algorithm assumes a data model consisting of both sinusoids 

and sine (sin(rr)/a;) functions in cross-range. These models work well for many man-made 

targets. We will show with experimental examples that compared with the FFT methods, 

these more sophisticated parametric spectral estimation methods can provide SAR images 

with higher resolution even though the data models used by the parametric methods are 

only approximately correct. 

The remainder of this chapter is organized as follows. Section 8.2 describes how to 

form SAR images via RELAX and RELAX-NLS. Section 8.3 presents experimental exam- 

ples showing their SAR image formation performances. Finally, Section 8.4 contains our 

conclusions. 
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8.2    SAR Image Formation via Spectral Estimation Methods 

We consider below forming super resolution SAR images using the robust relaxation 

based optimization algorithms including RELAX and RELAX-NLS. 

8.2.1    RELAX 

When the dominant features of a target, such as many man-made targets, can be ap- 

proximated as point scatterers, the RELAX algorithm [14] can be used to form the SAR 

images and improve the resolutions of the dominant target features. Assume that there are 

K dominant scatterers in a target. Then the parametric data model used by RELAX has 

the form [16]: 

y(n,n) = X>*eJ'Kn+öfcn) + e(n,n),    n = 0,1, • • • ,N - 1,    ft = 0,1, • • • ,N - 1,     (8.1) 
fe=i 

where N and N, respectively, denote the numbers of the available data samples in range and 

cross-range; {ak}k=i and {w*,ük}*Li, respectively, denote the unknown complex amplitudes 

and 2-D unknown frequencies of the K sinusoids or point scatterers; finally, e(n, ft) denotes 

the unknown noise and clutter. The sinusoidal frequencies uk and Qk correspond to the 2-D 

location of the Jfeth scatterer of a radar target; ak is determined by its radar cross section 

(RCS). It has been shown in [14] that RELAX can be implemented with a sequence of 

Fourier transforms and is robust against errors in the data model and the assumed number 

of scatterers due to its simplicity. The SAR images obtained via RELAX are referred to as 

RELAX SAR images or simply RELAX images. The steps of using RELAX for SAR image 

formation are given below. 

Step 1: Obtain the estimates of {ak,wk,G>k}k=i via RELAX by using the measured phase 

history data. See [14] for details. 

Step 2: From the estimated parameters and based on the data model in (8.1), generate the 

simulated phase history data of large dimensions: 

K 

I 
fc=i 

yaK,n,) = Ed*e,'('&*n'+Ö*ft')'    ns = 0,l,---,ßN-l,    n. = 0,l,---,ßN-l,     (8.2) 
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where ß (ß > 1) denotes an extrapolation factor and ak, uk, and <2>k, respectively, denote 

the estimates of ak, 0Jk, and G)k, k = 1,2, • • •, K. 

Step 3: Form RELAX SAR images containing only the dominant target features by applying 

the normalized FFT to the simulated phase history data {ys(ns,ns)}, i.e., by computing 

-,        ßN-lßN-l 
E   E ys(ns,ns)e-^

n°+m°l (8.3) 
ß2NN n% n% 

If we wish to suppress the sidelobes, we apply the normalized FFT to the windowed sequence 

{ws(ns,ns)ys(ns,ns)}, where the window sequence ws(ns,ns) satisfies 

ßN-lßN-l 
E   E  =ß2NN. (8.4) 

n3=0  ns=0 

We may also wish to form RELAX SAR images containing both the dominant target features 

and background clutter since, for example, the shadow information may be desired for au- 

tomatic target recognition. If so, we apply the normalized FFT to the sum of the simulated 

phase history data {ys(ns,ns)} and {ß2e(n,n)} with zero padding to have dimensions ßN 

and ßN, where e(n,n) denotes the estimated background clutter and is determined by 

e(n, n) = y(n, n) - E afce^
n+(Sfcfl),    n = 0,1, • • •, N - 1,    n = 0,1, • • •, N - 1.     (8.5) 

fc=i 

Note that scaling the e(n, n) by a factor of ß2 is needed when the background clutter is 

included in the RELAX SAR images since both of its dimensions are 1/ß times of those of the 

simulated phase history data. If we wish to suppress the sidelobes, we apply the normalized 

FFT to the sum of {ws(ns, ns)ys(ns,ns)} and {ß2we(n, n)e(n, n)} with zero padding to have 

dimensions ßN and ßN, where the window sequence we(n,n) satisfies 

N-1N-1 

E E^(n,n) = iViV. (8-6) 
n=0 n=0 

Note that since we cannot model the clutter effectively, its resolution cannot be improved. 

We remark that ß does not determine the resolution of the RELAX SAR images since 

the resolution is determined by RELAX. We need to choose ß > 1 to demonstrate the 

super resolution property of the RELAX algorithm for target feature extraction and ß is a 

parameter of user choice. 
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We consider using the generalized Akaike information criterion (GAIC) (see [14] and the 

references therein for details) to determine K, the number of sinusoids, by assuming the 

unknown noise and clutter being white. The estimate K of K is determined as an integer 

that minimizes the following GAIC cost function: 

GAIC* = NNln (£ £ \e{n,n)\2) + 7ln[ln(iViV)](4K + 1), (8.7) 
\n=0 n=0 j 

where e(n, n) is determined by (8.5) with K replaced by K, 4K +1 denotes the total number 

of unknown real-valued parameters (of which AK are for the sinusoids and 1 is for the white 

noise), and 7 is a parameter of user choice. 

8.2.2    RELAX-NLS 

The RELAX-NLS algorithm [15] can be used to form the SAR images of the dominant 

target features when the targets consist of both trihedral (point scatterers) and dihedral 

corner reflectors. In [15], a data model consisting of sine functions in cross-range has been 

used to model dihedrals and has the form: 

Kd 

Vd(n, n) = £ adfcsinc[7r&fc(n - Tk)]^u^n+e>d"n),    n = 0,1, • • •, N - 1,    n = 0,1, • • •, N - 1, 
fe=1 (8.8) 

where N and N, as before, denote the numbers of the available data samples in range 

and cross-range, respectively; adk, {udk,udk}, and bk, k = l,2,---,Kd, are, respectively, 

proportional to the maximal RCS, the central location, and the length of the kth dihedral 

corner reflector; rk, k = 1, 2, • • •, Kd, denotes the peak location of the data sequence in cross- 

range and is determined by the orientation of the kth dihedral corner reflector; finally, Kd 

is the number of the dihedral corners. Assume that there are Kd dihedral corner reflectors 

and Kt trihedral corner reflectors in a target and K = Kd + Kt. Then the parametric data 

model used to describe both trihedrals and dihedrals in the presence of noise and clutter has 

the form [15]: 

y(n,n) = yd(n,n)+yt{n,n)+e(n,n),    n = 0,1, • • -,N - 1,    n = 0,1, • • • ,N - 1,    (8.9) 
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where 

yt(n,n) = J2atke^
n+Qt*n\    n = 0,1, • • • ,N - 1,    n = 0,1, • • -,N - 1, (8.10) 

with {atjfiii {wtfc>
ötjf=i> respectively, denoting the unknown complex amplitudes and 

2-D unknown frequencies of the Kt trihedral corner reflectors. The RELAX-NLS algorithm 

proposed in [15] can be used to identify the types of the corner reflectors in a target and 

effectively estimate the target features 

{atk,utk,ütk}kU and {<Xdk,bk,e>dk,üdktTk}%±i by utilizing an alternating optimization 

method [17] to minimize a nonlinear least squares cost function. Like other alternating 

optimization algorithms [18], the RELAX-NLS is not guaranteed to converge to the global 

minimum, while it is guaranteed to converge to at least a local minimum under mild con- 

ditions. The SAR images obtained via RELAX-NLS are referred to as RELAX-NLS SAR 

images or simply RELAX-NLS images. To form the RELAX-NLS SAR images, the dom- 

inant target features are first extracted by using the RELAX-NLS algorithm (see [15] for 

details) and then Steps 2 and 3 discussed in Section 2.1 are used except that the simulated 

phase history data of large dimensions used in Step 2 is now determined by 

ys(ns, ns) = ßY, ädks\nc[Mns ~ ffc)]e^*+^ + £ atke^^+&^\ (8.11) 
fc=i *=i 

where ns = 0,1, • • ■, ßN - 1 and ns = 0,1, • • •, ßN - 1 with ß being an extrapolation factor 

(ß > 1); adk, u>dk, u>dk, bk, and fk, respectively, denote the estimates of adk, udk, üdk, bk, and 

rfc, k = 1,2, • • •, Kd; finally, atk, u>tk, and &tk, respectively, denote the estimates of atk, utk, 

and ütk, k = 1,2, • • •, Kt. The clutter estimate e(n, n) used in Step 3 is now determined by 

K<i -     ^      Kt ,-       -     X 

e(n, n) = y(n, n) - £ &dksmc[nbk(n - ffc)]e^+^ft) - £ atke^
n+^n\        (8.12) 

fc=l k=l 

with n = 0,1, • • •, N-1 and n = 0,1, • • •, N-1. Note that scaling the simulated data for the 

dihedral corner reflectors by a factor of ß in (8.11) is needed since the sine function goes to 

zero as ns increases or decreases away from rk. Note also that ß > 1 is used to demonstrate 

the super resolution property of the RELAX-NLS algorithm for target feature extraction and 

ß is a parameter of user choice. Finally, since the Fourier transforms of the sine functions of 
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sufficient lengths do not result in sidelobes, when ys(ns, ns) in (8.11) is windowed, the second 

term of ys(ns, ns) is multiplied by ws{ns,ns) and the first term is multiplied by tOi(ns), where 

wi(ns) is a 1-D window sequence satisfying 

ßN-l 

£ =ßN- (8-13) 
ns=0 

We can also determine K, the total number of trihedral and dihedral corners, by extending 

the GAIC discussed in Section 2.1 and assuming white noise and clutter. The estimate K of 

K is determined as an integer that minimizes the following extended GAIC cost function: 

(N-lN-\ 

EE 
in=0 n=0 

GAIC* = AWln f £ £ |e(n,n)|2] +j\n[\n(NN)]{AKt + 6kd + 1), (8.14) 

where 7 is a parameter of user choice; K = Kt + Kd with Kt and Kd denoting the numbers 

of trihedral and dihedral corners, respectively, determined by RELAX-NLS given K; e(n, n) 

is determined by (8.12) with Kt and Kd replaced by Kt and Kd, respectively; finally, 4Kt + 

6Kd + 1 is the total number of unknown real-valued parameters (of which AKt and 6Kd, 

respectively, are for the trihedral and dihedral corners and 1 is for the white noise). 

8.3    Experimental Results 

In this section, we demonstrate the SAR image formation performances of the RELAX 

and RELAX-NLS methods by using the experimental data. In the following examples, 

the extrapolation factor ß = 2 is used and GAIC with 7 = 4 is used to determine K for 

both RELAX and RELAX-NLS. Kaiser windows with shape parameter 6 are used to obtain 

windowed SAR images. 

First consider SAR image formation via 2-D FFT and RELAX by using a portion of 

the 2-D data corresponding to some roof rims collected by one of the two apertures of 

the ERIM's (Environment Research Institute of Michigan's) DCS interferometric synthetic 

aperture radar (IFSAR). Figures 8.1(a) and (b), respectively, show the unwindowed and 

windowed 2-D FFT images obtained by zero-padding the 40 x 40 phase history data. GAIC 

gives K = 59. Figure 8.2 shows the unwindowed and windowed RELAX images with and 
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without the background clutter and the corresponding clutter images with K = 59. (The 

unwindowed and windowed clutter images are obtained by applying the normalized FFT to 

{e(n,n}} and {we(n,n)e(n,n)}, respectively.) Note that the RELAX images have a higher 

resolution than the FFT images for the dominant scatterers. Utilizing only 25% of the 

40 x 40 phase history data, i.e., using a 20 x 20 phase history data, we form the 2-D FFT 

SAR images shown in Figure 8.3. Figure 8.4 shows the RELAX images as well as the the 

clutter images with K = 41 determined by the GAIC. Comparing Figures 8.4(f) and 8.1(b), 

we note that the two images are quite similar although the former uses only 25% of the data 

used by the latter. 

Consider next two examples of MSTAR target chip image formation, where the field 

data was collected by the Sandia National Laboratory (SNL) using the STARLOS sensor. 

The data was collected by a spotlight-mode SAR with center frequency 9.6 GHz, bandwidth 

0.591 GHz, elevation angle 15°, and range about 4.5 kilometers. Figures 8.5 and 8.6 show the 

photos of a tank taken from the azimuth angles 0° and 90°, respectively. Figures 8.7(a) and 

(b), respectively, show the unwindowed and windowed 2-D FFT SAR images of the target 

at 0° azimuth angle. We next form SAR images with and without background clutter by 

using the RELAX and RELAX-NLS methods. Figure 8.8 shows the SAR images, including 

the corresponding clutter images, of the target at 0° azimuth angle obtained via RELAX 

with K = 27 determined via GAIC. For this example, RELAX-NLS and RELAX yield 

identical images since all reflectors are identified by RELAX-NLS as trihedrals. Note again 

that the SAR images obtained via RELAX and RELAX-NLS have a higher resolution than 

those obtained via FFT methods for the dominant target scatterers. Figures 8.9(a) and (b), 

respectively, show the unwindowed and windowed 2-D FFT SAR images of the target at 90° 

azimuth angle. Figure 8.10 shows the RELAX SAR images with and without background 

clutter and the corresponding clutter images with K = 37 determined via GAIC. Figure 

8.11 shows the RELAX-NLS SAR images with and without background clutter and the 

corresponding clutter images obtained with K = 36 determined via GAIC. We note that 

although RELAX considers all reflectors as trihedrals, the RELAX images still resemble the 

FFT images, which shows the robustness of the RELAX algorithm. 
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Finally, we consider an example of the MSTAR Slicy data consisting of both trihedral and 

dihedral corner reflectors collected by the SNL using the STARLOS sensor. The field data 

was collected by a spotlight-mode SAR with a carrier frequency 9.559 GHz and bandwidth 

0.591 GHz. The radar was about 5 kilometers away from the ground target shown in Figure 

8.12. The SAR images are obtained when the target is illuminated by the radar from 

the azimuth angle 0° and elevation angle 30°. The unwindowed and windowed 2-D FFT 

images are shown in Figures 8.13(a) and (b), respectively. We have also applied RELAX 

and RELAX-NLS to this 32 x 32 phase history data matrix and determine K via GAIC. 

Figure 8.14 shows the unwindowed and windowed RELAX SAR images with and without 

background clutter and the corresponding clutter images with K = 36 determined via GAIC. 

We note that RELAX images have a better resolution than the FFT images for the dominant 

trihedrals even though the data model in the cross-range dimension used by RELAX is not 

correct for this example. Figure 8.15 shows the unwindowed and windowed RELAX-NLS 

SAR images with and without background clutter and the corresponding clutter images with 

K = 24 determined via GAIC. We note again that the RELAX-NLS images have a better 

resolution than the 2-D FFT images and the corner reflector types are mostly identified 

correctly. 

8.4    Conclusions 

In this chapter, we have demonstrated how to form super resolution SAR images via so- 

phisticated parametric spectral estimation algorithms including RELAX and RELAX-NLS. 

Experimental examples have shown that the robust RELAX and RELAX-NLS algorithms 

offer significant advantages over the FFT methods to better resolve the dominant target 

scatterers. 
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(a) (b) 

Figure 8.1:   SAR images obtained via 2-D FFT by using the 40 x 40 ERIM data,   (a) 

Unwindowed 2-D FFT image, (b) Windowed 2-D FFT image. 
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Figure 8.2: SAR images obtained via RELAX by using the 40 x 40 ERIM data with K = 59. 

(a) Unwindowed clutter image, (b) Windowed clutter image, (c) Unwindowed RELAX image 

without background clutter, (d) Windowed RELAX image without background clutter, (e) 

Unwindowed RELAX image with background clutter, (f) Windowed RELAX image with 

background clutter. 

(a) (b) 

Figure 8.3:   SAR images obtained via 2-D FFT by using the 20 x 20 ERIM data,   (a) 

Unwindowed 2-D FFT image, (b) Windowed 2-D FFT image. 
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Figure 8.4: SAR images obtained via RELAX by using the 20 x 20 ERIM data with K = 41. 

(a) Unwindowed clutter image, (b) Windowed clutter image, (c) Unwindowed RELAX image 

without background clutter, (d) Windowed RELAX image without background clutter, (e) 

Unwindowed RELAX image with background clutter, (f) Windowed RELAX image with 

background clutter. 
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Figure 8.5: Tank photo taken at 0° azimuth angle. 

Figure 8.6: Tank photo taken at 90° azimuth angle. 
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Figure 8.7: SAR images obtained via 2-D FFT from the MSTAR data hb03353.015 (0° 

azimuth and 15° elevation angles), (a) Unwindowed 2-D FFT image, (b) Windowed 2-D 

FFT image. 
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Figure 8.8: SAR images obtained via RELAX by using the MSTAR data hb03353.015 (0° 

azimuth and 15° elevation angles) with K = 27. (a) Unwindowed clutter image, (b) Win- 

dowed clutter image, (c) Unwindowed RELAX image without background clutter, (d) Win- 

dowed RELAX image without background clutter, (e) Unwindowed RELAX image with 

background clutter, (f) Windowed RELAX image with background clutter. 
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Figure 8.9: SAR images obtained via 2-D FFT from the MSTAR data hb03365.015 (90° 

azimuth and 15° elevation angles), (a) Unwindowed 2-D FFT image, (b) Windowed 2-D 

FFT image. 

172 



Unwindowed Clutter Imago Windowed Clutter Image 

(a) (b) 
Unendowed RELAX Image without Background Clutter Windowed RELAX Imago without Background Clutter 

'"W."*S£ 

(c) (d) 
Unwlndowed RELAX Image with Background Clutter Windowed RELAX Image with Background Clutter 

..-w.'sW' " ^k*&£'' 

(e) (f) 
Figure 8.10: SAR images obtained via RELAX by using the MSTAR data hb03365.015 

(90° azimuth and 15° elevation angles) with K = 37. (a) Unwindowed clutter image, (b) 

Windowed clutter image, (c) Unwindowed RELAX image without background clutter, (d) 

Windowed RELAX image without background clutter, (e) Unwindowed RELAX image with 

background clutter, (f) Windowed RELAX image with background clutter. 
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(c) (d) 
Unwindowed RELAX-NLS Image with Background Clutter Windowed RELAX-NLS Image with Background Clutter 
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Figure 8.11: SAR images obtained via RELAX-NLS by using the MSTAR data hb03365.015 

(90° azimuth and 15° elevation angles) with K = 36. (a) Unwindowed clutter image, (b) 

Windowed clutter image, (c) Unwindowed RELAX-NLS image without background clut- 

ter, (d) Windowed RELAX-NLS image without background clutter, (e) Unwindowed RE- 

LAX-NLS image with background clutter, (f) Windowed RELAX-NLS image with back- 

ground clutter. 
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Figure 8.12: Target photo taken at 45° azimuth angle. 

UnMowed FFT Image Mndow»d FFT Image 

(a) (b) 

Figure 8.13: SAR images obtained via 2-D FFT from the Slicy data hbl5533.015 (0° azimuth 

and 30° elevation angles), (a) Unwindowed 2-D FFT image, (b) Windowed 2-D FFT image. 
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Figure 8 14- SAR images obtained via RELAX by using the Slicy data (0° azimuth and 30° 
elevation angles) with K = 36. (a) Unwindowed clutter image, (b) Windowed clutter image, 
(c) Unwindowed RELAX image without background clutter, (d) Windowed RELAX image 
without background clutter, (e) Unwindowed RELAX image with background clutter. (1) 
Windowed RELAX image with background clutter. 
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Figure 8.15: SAR images obtained via RELAX-NLS by using the Slicy data (0° azimuth and 
30° elevation angles) with K = 24. (a) Unwindowed clutter image, (b) Windowed clutter 
image, (c) Unwindowed RELAX-NLS image without background clutter, (d) Windowed 
RELAX-NLS image without background clutter, (e) Unwindowed RELAX-NLS image with 
background clutter, (f) Windowed RELAX-NLS image with background clutter. 
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9.    Using Curvilinear SAR for Three-Dimensional 

Target Feature Extraction 

9.1    Introduction 

Three-dimensional (3-D) features of a target scatterer include the radar cross section 

(RCS), the two-dimensional (2-D) location (range and cross-range), and the height (the 

third dimensional parameter) of the scatterer. In [1], we described how to extract the 3-D 

target features via an interferometric synthetic aperture radar (IFSAR) system [2, 3], which 

uses a pair of vertically displaced antennas to obtain two coherent and parallel measurement 

apertures. The IFSAR system can be used for both 2-D and 3-D SAR imaging and 3- 

D target feature extraction. However, the IFSAR system suffers from ambiguity problems 

since it provides only two vertical parallel apertures. For example, the system cannot resolve 

more than one target scatterer at the same projected range and cross-range but at different 

heights [1]. 

In this chapter, we describe how to extract the 3-D target features via a curvilinear 

synthetic aperture radar (CLSAR) system [4, 5, 6]. The CLSAR system uses a single antenna 

to obtain a curved measurement aperture. The 3-D SAR images obtained via using FFT 

(fast Fourier transform) with CLSAR suffer from severe high sidelobes and hence are of little 

practical use. Hence CLSAR may not be suitable for the imaging of distributed targets. Yet 

CLSAR can be used with spectral estimation methods [4, 5, 6] to extract 3-D features of 

small targets consisting of a small number of point scatterers and can avoid the ambiguity 

problems suffered by IFSAR. 

In [4, 5, 6], relaxation-based methods have been used with 3-D backprojection [7] for 3-D 

target feature extraction via CLSAR. The relaxation-based methods have been proved to 

be quite useful also in several other applications such as in radio astronomy [8], microwave 

imaging [9], spectral estimation [10], and in both 1-D (one-dimensional) and 2-D line spectral 

estimation and target feature extraction [11]. As explained in [11], these methods may have 

different implementation forms and structures and the implementation structure used in 
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[11] makes the method converge to the global minimizer of a nonlinear least squares (NLS) 

criterion with a high probability and in a fast manner. 

In this chapter, a self-contained detailed derivation of the data model in a Cartesian 

coordinate is presented. The Cramer-Rao bounds (CRBs) of the parameter estimates are 

also derived. We describe how the RELAX algorithm [11] can be used for 3-D target feature 

extraction with CLSAR for different curvilinear apertures. 

The remainder of the chapter is organized as follows. In Section 9.2, the data model is 

derived and the problem of interest is formulated. Section 9.3 discusses how the RELAX 

algorithm can be extended for 3-D target feature extraction via CLSAR. In Section 9.4, 

we derive the CRBs for the parameter estimates. Section 9.5 shows the results of several 

examples illustrating the performances of different curvilinear apertures and the RELAX 

method. Finally, Section 9.6 contains our conclusions. 

9.2    Data Models and Problem Formulations 

We start with establishing 1-D data models for point scatterers and then extend the 

discussions to 3-D data models and problem formulations. 

9.2.1    High Range Resolution Radar 

We first describe how one can obtain 1-D target features via a high range resolution radar 

as a preparation for the analysis in the following subsections. The range resolution of a radar 

is determined by the radar bandwidth. To achieve high resolution in range, the radar must 

transmit wide band pulses, which are often linear frequency modulated (FM) chirp pulses 

[12, 13] . A normalized chirp pulse can be written as 

8(t) = e-i^f0t+^\    \t\<T0/2, (9.1) 

where f0 denotes the carrier frequency, 2j denotes the FM rate, and T0 denotes the width 

of the pulse. We assume that /0, 7, and T0 are known. The signal returned by a scatterer 
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of a target has the form 
r(t) = <jTe-J[2T/o(«-T)+7(t-r)2]j (9.2) 

where ST is determined by the RCS of the scatterer and r denotes the round-trip time delay. 

The demodulated signal d(t) is obtained by mixing r(t) with s*(t - r0) for some given r0 (see 

Section 9.2.2, where (•)* denotes the complex conjugate, 

d(t) = <!)Te?2W°-T'To)(T-To) e-Jl{T-T0)
2 eJ2y(T-T0)t _ (93) 

The term e~J7^~To)2 in (9.3) is usually close to a constant for all rmin < r < rmax, where rmax 

and Tmin correspond to the maximum and minimum values, respectively, of the round-trip 

time delays between the scatterers of a target and the radar and rmin < r0 < Tmax. This term 

can also be partially removed [12].  Let D{u) denote the Fourier transform of d(t).  Then 
2 

the inverse Fourier transform of D{u)e?^ will have the term e-
j^T-To)2 removed. Yet this 

removal can only be approximate since d(t) is not known for all t and hence D(u) is not 

known exactly. The closer e_J'7(T~To)2 is to a constant for rmin < r < rmax, the better its 

removal. With this removal, we have 

d(t) = 5Te
:'2('r-/;o_7To)(T_To)e?27(T_To)*, (9.4) 

which is a complex sinusoid with frequency 2J(T - r0) and amplitude 5Te
j2^f°-'yTo)(-T-To). We 

know rmax and rmin approximately since we assume that the altitude, antenna beamwidth, 

and grazing angle of the radar are known. We also assume that (rmax-rmin) <C T0. Then for 

-T0/2-(-rmax <t< T0/2 + Tmin, the scatterers of the target at different ranges correspond to 

different frequencies of the signal d(t), while the RCS's of the scatterers are proportional to 

the amplitudes of the corresponding sinusoids. The ranges and RCS's of the target scatterers 

are the 1-D target features. 

9.2.2    Full Synthetic Aperture Radar 

We now describe how one can obtain 3-D target features via the full synthetic aperture 

shown in Figure 9.1(a), which prepares the ground for the discussions on CLSAR in the 

next subsection.   The cross-range and height resolutions of an ordinary ranging radar is 
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limited by its antenna beamwidth. For an airborne or spaceborne system, a narrow antenna 

beamwidth requires an antenna that may be too large to be carried on board of the airplane 

or the spacecraft. Spotlight-mode SAR avoids this requirement by collecting coherent radar 

returns while viewing a target from many different azimuth and elevation angles, as shown in 

Figure 9.1(a). By properly processing the return signals, we can also achieve high resolution 

in both cross-range and elevation. 

A broadside data collection geometry in a spotlight-mode synthetic aperture radar (SAR) 

is shown in Figure 9.2 [13]. The XYZ coordinate system is centered on a small patch of 

ground, where a target is located. The ground is illuminated by a narrow radio frequency 

(RF) beam from the moving radar that rotates (with radius Ro) around the coordinate 

origin. In Figure 9.2, R denotes the distance between the radar and a scatterer at the 

position (x, y, z), and 8 and <f> are the azimuth and elevation angles of the radar relative to 

the XYZ coordinate system. We assume that 0, <f>, and Ro are known. 

The range R of the scatterer located at (x, y, z) can be written as 

R=[(R0cos6cos(j)-x)2 + (Rosm9cos<j)-y)2 + (Rosm^-z)'2]     . (9.5) 

It has been shown in Appendix A that under the conditions given in Appendix A, R can be 

simplified as 

R « Ro - x cos 6 cos <j) - y sin 6 cos <f) - z sin <f>, (9.6) 

where 
-        D       [(x2 - z2) sin (/)o cos fa - 2xz cos2 (f)0] (<f> - <f>0) (     , 

Ho = Ho H rö v     ' 

-(y2 + z2) cos 4>o + 2z2sin <f>0 /0 Qx 
x = x + — , (9.8) 

, xy cos fa + yz sin <fo /n 0% 
y = y + ^ , (y-yJ 

Ko 

, = ^_Qr2 + y2)sin^ {giQ) 

2Ro 

Note that the second terms of the right sides of (9.8), (9.9), and (9.10) are due to the range 

and elevation curvature effects and can be neglected for large RQ. Let r0 = 
2^L. Since r = 
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d(t, 9, <j>) = <JS)„,Z exp 

^, then from (9.4), we have 

J4(TT/O ~ ^r° + 7*) ^_Ro_i cos 0 cos 0 _ y gin 0 cos (f,-z sin </>) 

(9.11) 

where  <Jx>„iZ  is  proportional to  the  RCS  of the  scatterer  located  at   (x,y,z).      For 

4^ _ 7To + 7t)(ß0 - Ä0)/c < 2TT, where |t - r0| < T0> we can write (9.11) as 

dfoM)«*«^^4*^*0. (9-12) 

«a: — i-a; 

ty   — 

and 

where 
4(7T/Q - 7TQ + 7t) cos 6 cos «ft ,g ig, 

c 
4(TT/O - 7TQ + ft) sin 0 cos ^ ,gi4, 

c 

f 4(7r/o-7ro + 7^)sin0 ^ ^ 
z c 

Note that d{t, 6, (j>) is a 3-D complex sinusoid. The frequencies of the 3-D sinusoid correspond 

to the 3-D location (x, y, z) of the scatterer, while the amplitude is proportional to its RCS. 

Note that (x, y, z) is not the true location (x, y, z) of the scatterer, but is close to (x, y, z) for 

large RQ. (See the Appendix B on how to calculate {x,y,z) from (x,y,z).) When a target 

has multiple scatterers, d(t, 9, <£) in (9.12) will be a sum of sinusoids. The 3-D locations and 

RCS's of the target scatterers are the 3-D target features. Since usually the samples on the 

t, 9, and (j> axes are uniformly spaced, the samples of tx, ty, and tz occur at the points of a 

polar grid. Hence Polar-to-Cartesian interpolation may be needed for the data samples to 

occur at rectangular grid points. (See Section 9.5 for an alternative approach.) 

After Polar-to-Cartesian interpolation and sampling, the signal obtained by the 3-D full 

aperture SAR can be written as: 

K 

I 
fc=i 

y{n, n,n) = J2 ake^»n+*kfl+G>kn) + e(n, n, n), (9.16) 

where n = 0,1, • • •, N - 1, n = 0,1, • • •, N - 1, and n = 0,1, • • •, iV - 1 with N, N, and 

N denoting the numbers of available data samples in the three dimensions; K denotes the 
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number of sinusoids; ak, k = 1,2,---,K, denotes the unknown complex amplitude of the 

JUh sinusoid; uk, wfc, and ük, k = 1,2,-■• ,K, denote the 3-D unknown frequencies of the fcth 

sinusoid; finally, e(n, n, n), n = 0,1, • • •, N - 1, n = 0,1, • • •, N - 1, and n = 0,1, • • •, N - 1, 

denotes the unknown noise. The sinusoidal frequencies uk = 2nfk, ük = 2irfk, and ük — 

2irfk, correspond to the 3-D location of the kth. scatterer of a radar target; ak is determined 

by its radar cross section. 

Let 

y   =   [1/(0,0,0),   1/(1,0,0),   •••,   y(N-1,0,0), 

1/(0,1,0),   y(1,1,0),   •••,   y(N-1,1,0), 

    2/(0,iV-l,0),   y(l,N-l,0),   •••,   y(N-l,N-l,0), 

1/(0,0,1),   1/(1,0,1),   -..,   y(N-1,0,1), 

    y(0,0,N-l),   y(l,0,iV-l),   ■■■,   y(N-1,0,N - 1), 
■ T 

    y(0,N-l,N-l),   y(l,N-l,N-l),   •••,   y(N - 1,N - 1,N - 1)      • 
(9.17) 

Let e be defined similarly from e(n, n, n) as y from y(n, h, n). Let 

afe 

o3Uk 

eJ(N-l)u>k 

afc = 
pJUk 

pj(N-l)ök 

a* 
P3Uk 

eJ(N-i)ak 

Then 

y = Aa + e, 

(9.18) 

(9.19) 

where 

and 

a = ai   OLi   •••   OLK 

A = ai ® äi <g> ai   • • •   8LK ® ä/f ® a# 

where <g> denotes the Kronecker product [14]. 

(9.20) 

(9.21) 
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9.2.3    Curvilinear SAR 

Since it is not practical to use the full aperture shown in Figure 9.1(a) to extract 3-D 

target features, a curvilinear aperture consisting of M different radar viewing angles, such as 

the one shown in Figure 9.1(b), may be an alternative. In the curvilinear SAR, the received 

data vector yc is an (MN) x 1 subvector of y. Let Ic denote an M x (NN) matrix with each 

column and row containing only one non-zero unit element corresponding to the locations 

of the available data samples. Then 

yc = Aca + e, (9.22) 

where 

A,= (9.23) {Ic(äi ® äi)} ® ai   •••   {Ic(atf ® &K)} <g>aK 

The unknown sinusoidal parameters {wk,wk,Qk, «*, }f=i are our features of interest and 

are to be estimated from the yc collected by CLSAR. 

CLSAR, however, suffers from severe high sidelobes when used with FFT to form SAR 

images. We show this observation by using a simple simulated example as shown in Figure 

9.4. Figures 9.4(a) and (b) show the mesh plots of the modulus of the RCS of a single scatterer 

obtained by using 2-D FFT (range information suppressed for the illustration purpose only) 

when the full aperture in Figure 9.1(a) and the curved aperture in Figure 9.3(a) are used, 

respectively. Note that the SAR images formed by using the nonparametric FFT method 

with CLSAR can be of little practical use due to the severe high sidelobes. In the following 

sections, we consider parametric 3-D target feature extraction methods for CLSAR. 

9.3    The RELAX Algorithm 

The RELAX algorithm [11] can be extended to extract the 3-D target features. We first 

consider using RELAX with the full aperture for 3-D target feature extraction and then 

extend the approach to the case of curvilinear apertures. 
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9.3.1    Full Aperture 

The RELAX algorithm [11] minimizes the following nonlinear least squares (NLS) cost 

function: 

C=||y-Aa||2, (9.24) 

where ||-|| denotes the Euclidean norm. When the noise e(n,n,n) is the zero-mean white 

Gaussian random process, the NLS estimates obtained with RELAX coincide with the max- 

imum likelihood (ML) estimates of the target features. When the noise is colored, the NLS 

estimates are no longer the ML estimates, but they still possess excellent statistical perfor- 

mance [11]. 

The minimization of the cost function C in (9.24) is a complicated optimization problem. 

We present below the relaxation-based (RELAX) minimization approach that leads to a 

conceptually and computationally simple method. For each fixed K, we perform a complete 

relaxation-based search by letting only the parameters of one scatterer vary and freezing all 

others at their most recently determined values. In this way, we will also take advantage of 

the fact that the parameter estimates for the first K - 1 scatterers can be used to initialize 

the search for the parameters of the Kth one. 

To make the paper self-contained, let us now briefly prepare for the RELAX approach. 

Let 
K 

yfc = y-   53   äi(ai®ai®ai), (9.25) 

where ä*, a,, and a» are formed, similarly to those in Equation (9.18), from G)u ö>i, and G)h 

respectively, and {uit u)h u)U &i}f=lMk are assumed to have been estimated. Then minimizing 

C in (9.24) with respect to ak yields the estimate ak of ak: 

[äfc <g> äfe <g> afe]   yjfc 
ot-k = 

NNN 

and 

(9.26) 
Wfc=Wjfc ,(Dfc=Wfc ,ük=&k 

{u)k,u)k,&k} = &ig max   [afc <g> äfc <g> afc]   yk   . (9.27) 
Uk,Uk>ak 
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Hence {u)k,uk,u>k} can be obtained as the location of the dominant peak of the 3-D peri- 

odogram, 
[ä* ® äfe ® afc]   yfc 

NNN 

which can be computed efficiently with 3-D FFT. Note that padding with zeros for the 3-D 

FFT is necessary to achieve high accuracy. An alternative approach is to find an approximate 

location corresponding to the global maximum with the 3-D FFT without much zero-padding 

and then use the approximate location as the initial condition to find a more accurate position 

via a multidimensional search method, such as the FMINV function in PV-WAVE. We used 

the latter approach in our examples presented in Section 9.5. Note that ak is easily computed 

from the complex height of the peak of [ä* ® afc <g> a*]   yk/(NNN). 

With the above preparations, we now proceed to present the steps of the RELAX algo- 

rithm for 3-D target feature extraction with the full aperture SAR. 

Step (1): Assume K = \. Obtain {u>k,uk,u)k,ak}k=i fromy by using (9.27) and (9.26). 

Step (2): Assume K = 2. Compute y2 with (9.25) by using {tok,ük,&k,ak}k=i 

obtained in Step (1). Obtain {u)k,u)k,u)k,ak}k=2 from y2. Next, compute yx by using 

{u)k, uk, &k, &k}k=2 and then redetermine {uk, ük, &k, &k}k=i from yx. 

Iterate the previous two substeps until "practical convergence" is achieved (to be dis- 

cussed later on). 

Step (3): Assume K = 3. Compute y3 by using {u)k,u)k,u!k,ak}
2

k=1 obtained in Step 

(2). Obtain {ük,uk,u>k,äk}k=3 from y3. Next, compute yx by using {u)k,ük,u)k,ak}l=2 and 

redetermine {u)k,u>k,u>k,afe}fe=x from yx. Then compute y2 by using {ük,ük,uk, afe}fc=x,3 and 

redetermine {(2)k,ük,&k,&k}k=2 from y2. 

Iterate the previous three substeps until "practical convergence". 

Remaining Steps: Continue similarly until K is equal to the desired or estimated 

number of sinusoids. (Whenever K is unknown, it can be estimated from the available data, 

for instance, by using generalized AIC rules which are particularly tailored to the RELAX 

method of parameter estimation. See, e.g., [11].) 

The "practical convergence" in the iterations of the above RELAX method may be de- 
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termined by checking the relative change e of the cost function C \{u)k,ük,u)k,Ö!k}k=i) in 

(9.24) between two consecutive iterations. Our numerical examples show that the iterations 

usually converge in a few steps. 

9.3.2    Curvilinear Aperture 

The RELAX algorithm for this case of curvilinear aperture is similar to that of the full 

aperture except that Equations (9.26) and (9.27) above are replaced by 

[{Ic(ä* ®h)}®*k\Hyck 
Oik MN 

and 

Wk =Wjfc ,ü>k =Wfc fik -^k 

H. 
{wfc, uk, Uk} = arg max   [{Ic(a* ® äfc)} ® a*]   yCk 

respectively, where 

Uk ,&k -fik 

K 

yCA=yc-   E   Oi[{Ic(äi®ai)}®a<]- 

(9.28) 

(9.29) 

(9.30) 

Let yCk be similar to yk except that the elements in yk that are missing in yCk are replaced 

with zeros in yCk. Then the right hand side of (9.29) can also be computed by applying 3-D 

FFT to yCk. 

For the special case where the curvilinear aperture consists of the orthogonal subäpertures 

such as those shown in Figure 9.3, the aforementioned zero-filling and 3-D FFT can be 

avoided. Note that the analysis based on Figure 9.3(a) also holds for Figures 9.3(b) and 

(c) since they are the rotations of the coordinate system in Figure 9.3(a). Hence we only 

consider Figure 9.3(a) below. For this case, Ac becomes 

Ac = 
ai 

bi 
ai 

afc 

bk 

<8>afc (9.31) 

where bfc is a subvector of afc without its first element. Then 

iT 

%   b£ afc>  yCk 

Oik (N + N-1)N 
(9.32) 

Wfc =Wfc ,Uljfc =Wk,Uk =<*>k 
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and 

{u)k,wk,Uk}   =   arg  max 
Wjfc,Wfc,Wfc 

arg max 

*l   bj 
H 

®afc 'ck 

where 

yc* 
yCfcl 

ycfc2 

(äfc <g> afc)
HyCfcl + (bfe <S> afe)"yCfc2 

(NN) x 1 

(iV-l)JVxl. 

(9.33) 

(9.34) 

The right hand side of (9.33) can be calculated efficiently with the 2-D FFT's, which con- 

sists of applying 2-D FFT to yCfcl and oT y\ T 
Cfc2 

, where 0 here denotes the N x 1 zero 

vector. Then ak is easily computed from the complex height of the peak of [(ä* ® a.k)
HyCkl+ 

(bjt ® afc)
ffyCjt2]/[(iV + N- 1)N\. Hence using the apertures in Figure 9.3 can significantly 

reduce the amount of computations needed for target feature extraction. 

9.4    Cramer-Rao Bound of the Paramaeter Estimates 

We derive the CRB matrix for the parameter estimates when the noise covariance matrix 

is arbitrary and unknown. 

Consider first the case of the full aperture. Let Q = E{eeH} be the noise covariance 

matrix. The extended Slepian-Bangs formula for the ijth element of the Fisher information 

matrix has the form [15, 16]: 

{FIM}^. = tr (Q-^Q-^;) + 2Re \(<xHAH)[ Q1 {Act)', (9.35) 

where X- denotes the derivative of X with respect to the ith. unknown parameter, tr(X) 

denotes the trace of X, and Re(X) denotes the real part of X. Note that FIM is block 

diagonal since Q does not depend on the parameters in (Aa), and (Aa) does not depend 

on the elements of Q. Hence the CRB matrix for the target features of interest can be 

calculated from the second term on the right side of (9.35). Let 

■n ReT(a)   ImT(a)   a;T   CbT   u1 (9.36) 
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wher ew = Wl 0J2    ■ •■   uK 

T 

|W = Ül     ü)2     ■ ■ •     ÜK 

Let 

F = Fi   F2   F3   F4   F5 

wher e 

Fx = A, 

F2 = ;'A, 

F3 = Dw*, 

F4 = D*$, 

, and (JJ = UJi     U2     ■■•     UJK 

(9.37) 

(9.38) 

(9.39) 

(9.40) 

(9.41) 

and 

F5 = D*$, (9.42) 

with A being defined in (9.21), the jcth columns of Dw, D^, and Dö being d[äk <g> äk <g> 

ak]/du)k, ö[ä* ® äfc ® a*]/öwfc, and d[äfc <g> äfc ® ak]/duk, respectively, and 

$ = diag| oei,   a2,   •■•   ««■ | ■ 

Then the CRB matrix for the parameter vector 77 is given by: 

(9.43) 

ffrk-l-cM-l CRBfa) = [2Re(FffQ-1F)] (9.44) 

For the case of curvilinear aperture, the CRB matrix for the target parameters is similar 

to the one in (9.44) except that the A in (9.44) is now replaced by Ac. 

9.5    Numerical and Experimental Results 

We use CRBs to study the performances of different curved apertures for target feature 

extraction. We also present several examples showing the performances of the RELAX 

algorithm presented in this paper for 3-D target feature extraction with a CLSAR. 
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9.5.1    Performance Analysis of Different Curvilinear Apertures via CRBs 

Since the CRBs are the best unbiased performance any asymptotic estimator can achieve, 

we compare the CRBs of the target features when different curved apertures are used for 

3-D target feature extraction and compare them with the CRB of the full aperture. Without 

loss of generality, let us consider the case of a single scatter with a = 1 and u = üi = Q = 0 . 

The additive noise is assumed to be zero-mean white Gaussian with variance <j2 = 40. The 

full aperture data is generated according to (9.16) with iV = N = N = 32. 

Consider first the example of M = 63. The curved apertures we consider include the 

parabolic one in Figure 9.1(b), the L-shaped one in Figure 9.3(a), and the ones in Figure 

9.5. For the arc apertures, the Arc-1 aperture is a quarter of a circle whose center is at the 

upper right corner of the full aperture in Figure 9.1(a) and whose radius is 31, as shown in 

Figure 9.5(b), and the Arc-2 aperture is one half of a parabolic aperture whose vertex is at 

the lower right corner of the full aperture and who starts at the upper left corner of the full 

aperture in Figure 9.1(a), as shown in Figure 9.5(c). These curvilinear apertures are subsets 

of the full aperture in Figure 9.1(a) and are made to be as large as possible. For example, 

the radius of the circular aperture is 15.5 in this example. Table 9.1 shows the CRBs of 

the target parameters. As expected, the CRB for u is the same for all of the curvilinear 

apertures since u is in the range direction, which is normal to the plane of the curvilinear 

apertures. Comparing the CRBs for the L-shaped, Arc-1, and Arc-2 apertures, we note that 

as expected, the more curved the aperture is, the lower the CRBs for the target features. 

Since the Arc-2 aperture is the least curved, it has the largest CRBs. When the aperture 

becomes one straight line and hence no longer curved, the CRBs go to infinity since we can 

no longer extract 3-D target features. Note also that from the left to right of Table 9.1, the 

CRBs for ü and Q decrease since the aperture length decreases. The CRB for a, however, 

does not always decrease. 

Consider next the circular aperture in Figure 9.5(a) when w = w = w = 0. Figure 9.6 

shows the CRBs of the target parameters as a function of the radius of the circular aperture 

for different M. Note that as expected, the larger the radius and/or M, the lower CRBs of 
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the target parameters. Note also that, as expected, the CRB for w does not change with 

the radius for the fixed M since again u> is in the range direction, which is orthogonal to the 

plane of the curvilinear aperture. 

9.5.2    Experimental Examples 

We now present two experimental examples to demonstrate the performances of the RE- 

LAX algorithm for 3-D target feature extraction with a CLSAR. In the following examples, 

we use e = 0.01 to test the convergence of the RELAX algorithm. 

We first consider an experimental example, where the indoor data was obtained by the 

Radar Signature Branch, Naval Air Warfare Center, Mugu, California. The radar carrier 

frequency is 9.968 GHz and the bandwidth 1.524 GHz. The 32 x 32 x 32 data set was 

obtained with the full aperture shown in Figure 9.1(a) with 32 samples in each dimension 

and the angular increments were 0.28°. The target consists of K = 8 corner reflectors with 

a cubic configuration and was about 15 meters away from the radar. The scatterers were 

about 0.5 meters apart. 

Instead of Polar-to-Cartesian interpolation, we created an N x N x N rectangular grid 

and mapped the data sample at each (tx,ty,tz) to the nearest grid point, where tx, ty, and 

tz are functions oft, 9, and <j> (see Equations (9.13) to (9.15)). Let N denote the number of 

available data samples. Then for both full and curvilinear apertures, the data model can be 

written as 

yr = Ir AQ + e, (9.45) 

where Ir denotes an N x (NNN) matrix with each column and row containing only one 

non-zero unit element corresponding to the locations of the available data samples in the 

rectangular grid. Note that the larger the dimensions of the rectangular grid, the more 

accurate the mapping approximation. For large enough dimensions, however, the noise 

will become the dominant source of error. For our examples, we chose N = N = N = 

128. As compared to Polar-to-Cartesian interpolation, the grid mapping approach avoids 

the interpolation step needed by the former, which could be complicated for an arbitrary 
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curvilinear aperture. The former approach, however, is computationally more efficient due 

to its smaller data dimensions. 

The steps of applying RELAX to yr are similar to those for the case of full aperture 

except that Equations (9.26) and (9.27) above are replaced by 

[Ir(ä* ® 3Lk®ak)]HyTk 

N 
(9.46) 

wk =£jk ,G>k —Cik Vie =Uk 

and 

{o)A!,WfclWfc} = arg max    [Ir(äk ®äk <g> afc)]   yTk   , (9.47) 
Uk,LOk,(Jk 

respectively, where 

Yrk=yr-     E     Oilr^®^®«*)- (9-48) 

Let yn be similar to yfe except that the elements in yfc that are missing in yn are replaced 

with zeros in yn. Then the right hand side of (9.47) can also be computed by applying 3-D 

FFT to yn. Since the dimensions of the rectangular grid are larger than the dimensions of 

the original data due to zero-filling, the 3-D FFT of yn is approximately periodic and we 

should limit our attentions to only one period. For our examples, the former is four times 

as large as the latter and hence the peak searching in (9.47) is limited to the frequency 

intervals [ 2TT X (-0.125) 2?r x 0.125 ]• Note that the computational advantages of FFT 

over DFT (discrete Fourier transform) and backprojection diminish as the dimensions of the 

rectangular grid increases, especially for curvilinear apertures. 

We remark that for the special case of the curvilinear apertures consisting of orthogonal 

subapertures shown in Figure 9.3, we can still use 2-D FFT with the rectangular grid mapping 

approach and we omit the details here for the interest of brevity. For this special case, though, 

the Polar-to-Cartesian interpolations needed are 2-D and hence are much easier to implement 

than for an arbitrary curvilinear aperture. 

For the data model in (9.45), the CRB matrix for the target parameters of interest 

is similar to the one in (9.44) except that the A in (9.44) is now replaced by IrA. The 

CRB analysis results for this data model should also be similar to those observed in the 
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previous subsection. Hence the CRB analysis is omitted for this data model for the interest 

of conciseness. 

Figure 9.7 shows the extracted scatterers when K = 8 is used with RELAX. Figure 9.7(a) 

is obtained when the full aperture shown in Figure 9.1(a) is used to extract the 3-D target 

features and Figure 9.7(b) is obtained when the L-shaped aperture shown in Figure 9.3(a) is 

used. The centers of the circles denote the locations of the extracted scatterers in 3-D space 

and the radius of each circle is proportional to the modulus of the RCS of the corresponding 

scatterer. The triangles show the projections of the scatterer locations onto the horizontal 

plane and their sizes are also scaled according to the RCS's of the scatterers. Note that 

Figure 9.7(b) is similar to Figure 9.7(a) even though the former is obtained by using only 

0.19% amount of data used by the latter. 

Consider next an experimental example, where the field data was obtained by the Deploy- 

able Signature Measurement System (DSMS), Carderock Division, Naval Surface Warfare 

Center, Bethesda, Maryland. The radar was carried on board of a helicoptor. The radar 

carrier frequency is 9.449 GHz and the bandwidth 0.498 GHz. The data set was obtained 

with the curved aperture shown in Figure 9.8 where there are 64 look angles and 64 samples 

per look angle. The radar was about 300 meters away from the ground target. The ground 

target consists of 13 corner reflectors on the ground plane and 7 corner reflectors mounted 

on a wooden tripod that is about 2.65 meters tall. The true distribution of the scatterers is 

shown in Figure 9.9(a), where the centers of the squares denote the locations of the scatterers 

in 3-D space and the length of each square is proportional to the modulus of the RCS of 

the corresponding scatterer. The triangles show the projections of the scatterer locations 

onto the ground plane and their sizes are also scaled to be proportional to the RCS's of the 

scatterers. 

For this example, we also use the rectangular grid mapping with N = N = N = 128. 

Figure 9.9(b) shows the scatterers obtained by using RELAX with K = 20. We note that 

among the 20 scatterers, we got 18 of them approximately correct. The two that are missing 

could be because they are in the shadows of the other scatterers. 
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9.6    Conclusions 

The main subject of this chapter has been to extract the 3-D target features via a curvi- 

linear synthetic aperture radar (CLSAR). Since CLSAR itself is a relatively new technology, 

a self-contained derivation of the data model has been presented. The Cramer-Rao bounds 

(CRBs) on the parameter estimates have also been derived. We have used the CRBs to study 

the performances of different curvilinear apertures for target feature extraction. Finally, the 

RELAX parameter estimation method has been extended to extract the 3-D target fea- 

tures with a CLSAR. We have presented several experimental examples showing the feature 

extraction performances of the RELAX algorithm. 
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Appendix A - The Approximation of the Range R 

The range R in (9.5) can be approximated as follows. Under the conditions ^ < 1, 

£- < 1, and f- < 1, we have 

R   =   Ro 

«   Ro 

1 - 2 J- cos 6cos(f>-2 fracyRo sin 9cos<f)- 2— sin <j) H ^ 
o 

1/2 

(9.49) 
Ro -tto 

x v       n       ,      z   ■    ,     x* + y* + z* 
1 - — cos 6 cos <f> - — sin 6 cos <p - — sin (p + —^  

Ro Ro Mo zno 

(x cos 6 cos (j) + y sin 6 cos <f> + z sin 4>)2 ,Q 5Qs 

2RQ 

Let if; = (f> - (f)0, where </>0 is the average of all <f> used to form the synthetic aperture. For 

very small ip, we have 

cos <f> « cos (j)o - (sin <f>0)ip, (9.51) 

sin (j) fa sin (f>0 + (cos (j)o)^- (9.52) 
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For very small 8, we have cosO & 1, sin6* a: 9. Then keeping first-order terms yields 

x2 sin2 <p + x2 sin2 6 cos2 <f> + y2 sin2 (fr + y2 cos2 # cos2 <fr + z2 cos2 <fr 

«   x2 sin </>[sin <^0 -I- (cos 0o)V>] + y2 sin 0[sin 0O + (cos </>o)^] + y2 cos 0[cos (fr0 — (sin <fo)?/>] 

+z2 cos 0[cos 0o — (sin <ßo)ip] 

äS    [(x2 + y2) sin 0o] sin 0 + [(y2 + z2) cos </>0] cos 0 cos 0 + [(x2 - z2) sin 0O cos 0o]-0.  (9.53) 

We also have 

2xy cos 0 sin 0 cos2 0 + 2yz sin 0 cos </> sin <fr + 2x2 cos 9 cos <£ sin <£ 

«   2xy sin 0 cos </>[cos </>0 — (sin ^o)'*/'] + 2yz sin 0 cos (/»[sin 0O + (cos ^o)^] 

+2x;z cos 9 cos 0[sin (frQ + (cos </>o)'0] 

«   2(xy cos <fro + yz sin <fr0) sin 0 cos (fr + (2xz sin </>0) cos 8 cos 0 + (2xz cos2 0O )■)/>. (9.54) 

Hence fi is simplified to (9.6). 

Appendix B - Calculating (x, y, z) from (x, y, z) 

Given RQ, (fr0, and (x,y,z), (x,y,z) can be determined from (9.8), (9.9), and (9.10) as 

follows: 

r/foV + 2VlRo [^ (l + rg) (#o + 2r72z) + r^ - 2r72
4x] y6 + tf2 [2%

2 (l + rfc) f 

+4r?2 (ry2 + l)2 z2 + Ar&x2 + 4i?or/2r72 (ö + rg) z - 8^»n (l + rg) xz 

+ARo (2V$ - 3r?4) x + Fftrft (-8 + rg)] y4 - 8^^ (771^0 + ^Vim* - 2r/2
2x) yy3 

+2V2Rl [2~z (l + r&) +Ä0772 (3 + rj2) + 2^7/1x] y2y2 - 8r?2it:4y3y + vivify4 

= 0, (9.55) 

x   =   ~2 {»V + R° [RoVi(^ + nl) ~ 2r£x + 2^7/25(1 + T?
2
)] y2 

-2yVlR
2
0y - Ä^y2} /[^(^y + yrjf)*/] , (9.56) 
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and 

z   =   Ur1
2

1712yA + R0m[^iz{l + V22)+V2(mRo-2xT1
2

2)]y2 

Li 

-2V2R
2yy + ÄjjWU + vl)} I [Mvlv + mDv] , (9-57) 

where 771 = cos</>0 and rj2 = sin^0- Note that the left side of (9.55) is an eighth-order 

polynomial, and hence has eight zeros. We pick the root that is closest to y as the solution 

for y. 

We now present two examples. First, let R0 = 15, (j>0 = 7r/5, and (x, y, z) = (0.5,0.4,0.3). 

We obtain {x,y,z) = (0.5005,0.3849,0.3078). (We remark that the other seven possible 

solutions for y are either complex or far away from y.) Next, let R$ = 300, (j>0 = 7r/4, 

and (x,y,z) = (5,4,2). We obtain (x,y,z) = (4.9991,3.9346,2.0477). Note that in both 

examples, (x, y, z) are very close to (x, y, z) and hence can be used to approximate (x, y, z). 

Reference 

[1] J. Li, Z.-S. Liu, and P. Stoica, "3-D target feature extraction via interferometric SAR," 

IEE Proceedings on Radar, Sonar and Navigation, vol. 144, April 1997. 

[2] L. C. Graham, "Synthetic interferometer radar for topographic mapping," Proceedings 

of the IEEE, vol. 62, pp. 763-768, June 1974. 

[3] R. Gens and J. L. V. Gendren, "SAR interferometry - issues, techniques, applications," 

International Journal of Remote Sensing, vol. 17, pp. 1803-1835, July 1996. 

[4] K. Knaell, "Three-dimensional SAR from curvilinear apertures," Proceedings of the 1996 

IEEE National Radar Conference, pp. 220-225, Ann Arbor, MI, May 1996. 

[5] K. Knaell, "Three-dimensional SAR from practical apertures," SPIE Proceedings on 

Optical Engineering in Aerospace Sensing, San Diego, vol. 2562, pp. 31-41, 1995. 

[6] K. Knaell, "Three-dimensional SAR from curvilinear apertures," SPIE Proceedings on 

Optical Engineering in Aerospace Sensing, vol. 2230, pp. 120-134, Orlando, FL, April 

1994. 

[7] K. K. Knaell and G. R Cardillo, "Radar tomography for the generation of three- 

dimensional images," IEE Proceedings on Radar, Sonar and Navigation, vol. 142, 

pp. 54-60, April 1995. 

196 



[8] J. A. Högbom, "Aperture synthesis with a non-regular distribution of interferometer 

baselines," Astronomy and Astrophysics Supplements, vol. 15, pp. 417-426, 1974. 

[9] J. Tsao and B. D. Steinberg, "Reduction of sidelobe and speckle artifacts in microwave 

imaging: The CLEAN technique," IEEE Transactions on Antennas and Propagation, 

vol. 36, pp. 543-556, April 1988. 

[10] P. T. Gough, "A fast spectral estimation algorithm based on the FFT," IEEE Trans- 

actions on Signal Processing, vol. 42, pp. 1317-1322, June 1994. 

[11] J. Li and P. Stoica, "Efficient mixed-spectrum estimation with applications to tar- 

get feature extraction," IEEE Transactions on Signal Processing, vol. 44, pp. 281-295, 

February 1996. 

[12] D. C. Munson, Jr., J. D. O'Brien, and W. K. Jenkins, "A tomographic formulation 

of spotlight-mode synthetic aperture radar," Proceedings of the IEEE, vol. 71, pp. 917 

-925, August 1983. 

[13] C. V. Jakowatz, Jr., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson, 

Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach. Norwell, MA: 

Kluwer Academic Publishers, 1996. 

[14] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, MD: Johns Hopkins 

University Press, 1984. 

[15] W. Bangs, Array processing with generalized beamformers. Ph.D. dissertation, Yale 

University, New Haven, CT, 1971. 

[16] P. Stoica and A. Nehorai, "Performance study of conditional and unconditional 

direction-of-arrival estimation," IEEE Transactions on Acoustics, Speech, and Signal 

Processing, vol. ASSP-38, pp. 1783-1795, October 1990. 

197 



'■■?■■ 

<|>j 

••••...•••.....•■a :::::::::::::::::: 

4>          ,•-" •••-... 

•                                      • 
•                                         • 

•                                                                                       • 

Z.Z.................•■«•••*••>••••*• 
,.....■■■..•..••••.■•••■«■•••••■•••••• 
...••..•••••••«•••■•••••••••••••••••• 

!!.C!"*"m<t"*<*  

(a) 

• • • • • • • • • • • • 
• • * • 

; 

(b)        e 

Figure 9.1: Possible apertures for a 3-D SAR system, a) Full aperture, b) Parabolic aperture. 
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Figure 9.2: Data collection geometry. 
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Figure 9.3: Apertures consisting of orthogonal subapertures. 
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Aperture CRB(a) CRBH CRB(w) CRB(ü>) 

Full -5.9875 -51.4511 -51.4511 -51.4511 

Circular 5.3663 -39.3415 -40.8469 -40.8788 

Parabolic 5.8693 -39.3415 -40.4915 -39.6521 

L-shaped 4.8584 -39.3415 -38.2414 -38.2414 

Arc-1 11.7482 -39.3415 -31.7272 -31.7272 

Acr-2 17.2473 -39.3415 -26.8015 -27.4636 

Table 9.1: Comparison of the CRBs (in dB) of the target features for the cases of the full, circular, 

parabolic, L-shaped, Arc-1, and Arc-2 apertures when M = 63, K = 1, u = ü = G> = 0, a = 1, and 

o2 = 40. 

Cross-Range 

(a) (b) 

Figure 9.4: Mesh plots of the modulus of the RCS obtained by using 2-D FFT with different 

apertures (range information suppressed), (a) Full aperture as shown in Figure 9.1(a). (b) Curved 

aperture as shown in Figure 9.3(a). 

Radius    *• 

■-...e 

(a) (b) (c) 

Figure 9.5: Curvilinear apertures, a) The circular aperture, b) The Arc-1 aperture, c) The 

Arc-2 aperture. 
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Figure 9.6: The CRBs of the target parameters as a function of the circular aperture radius 

when K = 1, a = 1, w = ü = ü = 0, and a2 = 40. a) The CRB of the complex amplitude 

a. b) The CRB of u. c) The CRB of G>. d) The CRB of Q. 
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(a) 

(b) 

Figure 9.7: 3-D plots of K = 8 scatterers extracted by using RELAX with the indoor 

experimental data, (a) Obtained with full aperture as shown in Figure 9.1(a). (b) Obtained 

with curved aperture as shown in Figure 9.3(a). 
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Figure 9.8: Curvilinear aperture used to obtain the field experimental data (DSMS data). 
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Figure 9.9: 3-D plots of K = 20 scatterers extracted by using RELAX with the field exper- 

imental data (DSMS data), (a) True scatterer distribution, (b) Obtained with RELAX. 
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10.    Autofocus and Feature Extraction in Curvilinear SAR 

10.1    Introduction 

Synthetic aperture radar (SAR) can be used to form images and extract target features 

with high resolution in range, cross-range, and elevation directions. Strip-map and spotlight- 

mode SAR systems are two commonly used systems. The former is often used for large area 

terrain imaging and feature extraction. The latter is used to image a relatively small patch 

of the earth with high resolution. Both the strip-map and spotlight-mode SAR provide 

only two-dimensional (2-D) target features including the radar cross section (RCS) and 2-D 

location (range and cross-range) for each scatterer. Several other SAR systems can be used to 

obtain three-dimensional (3-D) target features, which include the radar cross section (RCS), 

the 2-D location, and the height for each scatterer. An interferometric synthetic aperture 

radar (IFSAR) system [1, 2, 3], which uses a pair of antennas displaced in the cross-track 

plane to obtain two coherent and parallel measurement apertures, can be used for both 2-D 

and 3-D SAR imaging and 3-D target feature extraction. However, the IFSAR system suffers 

from ambiguity problems since it provides only two vertical parallel apertures. For example, 

the system cannot resolve more than one target scatterer at the same projected range and 

cross-range but at different heights [3]. A curvilinear synthetic aperture radar (CLSAR) 

system [4, 5, 6, 7] can be used with spectral estimation methods to extract the 3-D target 

features and avoid the ambiguity problems suffered by the IFSAR system. 

For a practical SAR system, however, aperture errors exist due to atmospheric turbulence 

and platform position uncertainty. These errors can significantly degrade the SAR image 

quality and the estimation accuracy of target parameters. Hence SAR imaging and target 

feature extraction algorithms must be combined with effective motion compensation methods 

to obtain the best results in practice. 

Many algorithms, such as the phase-gradient autofocus (PGA) algorithm [8, 9,10] and the 

motion compensation RELAX (MCRELAX) algorithm [11], have been proposed to compen- 

sate for the unknown motion errors in 2-D SAR imaging by assuming that the motion errors 
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mainly result in phase errors in the cross-range direction. The purpose of this chapter is to 

address the autofocus problem in CLSAR. The problem herein is much more complicated 

since the aperture errors can no longer be approximated as phase errors in the cross-range 

direction. 

In this chapter, we present a relaxation-based autofocus method to compensate for the 

curvilinear aperture errors in CLSAR. This method is referred to as the autofocus RELAX 

or AUTORELAX algorithm. The AUTORELAX algorithm can be used to compensate for 

the curvilinear aperture errors and extract 3-D target features. This chapter is an extension 

of [7], in which we described how to extract the 3-D target features via CLSAR with a 

relaxation-based algorithm without considering the existence of the curvilinear aperture 

errors. 

The remainder of this chapter is organized as follows. In Section 10.2, the data model is 

given and the problem of interest is formulated. In Section 10.3, we present the relaxation- 

based autofocus algorithm. Section 10.4 shows the experimental and numerical examples 

illustrating the performance of AUTORELAX. Finally, Section 10.5 contains our conclusions. 

10.2    Data Model and Problem Formulation 

10.2.1    High Range Resolution Radar 

We first describe how one can obtain 1-D target features via a high range resolution radar 

as a preparation for the analysis in the following subsections. The range resolution of a radar 

is determined by the radar bandwidth. To achieve high resolution in range, the radar must 

transmit wideband pulses, which are often linear frequency modulated (FM) chirp pulses 

[12, 13] . A normalized chirp pulse can be written as 

s{t)=e-^fot+^)^    \t\<T0/2, (10.1) 

where /0 denotes the carrier frequency, 27 denotes the FM rate, and T0 denotes the width 

of the pulse. We assume that /„, 7, and T0 are known. The signal returned by a scatterer 
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of a target has the form 

r(t) = öTe-
j^Mt-T)+^-T)2\ (10.2) 

where ST is determined by the RCS of the scatterer and r denotes the round-trip time delay. 

The dechirped signal d(t) is obtained by mixing r(t) with s*(t - r0) for a reference r0 (see 

Section 10.2.2), where (•)* denotes the complex conjugate and 

d(t) = STe
j2^fo^'yT0^T~To)e~j'r(-T'"ro)2e:i2^T~To)t. (10.3) 

The term e_J7(T_To)2 in (10.3) is usually close to a constant for all rmin < r < rmax, where rmax 

and rmin correspond to the maximum and minimum values, respectively, of the round-trip 

time delays between the scatterers of a target and the radar and rmin < r0 < rmax. This term 

can also be partially removed [12].  Let D(u) denote the Fourier transform of d(t).  Then 
2 

the inverse Fourier transform of D(co)ej^ will have the term e-
J'7(T_To)2 removed. Yet this 

removal can only be approximate since d(t) is not known for all t and hence D(u) is not 

known exactly. The closer e
_-7'y(T~To)2 is to a constant for rmin < r < rmax, the better its 

removal. With this removal, we have 

d(t) = 5Tei
2(7r/o-7To)(T-ro)eJ27(T-To)t) (10.4) 

which is a complex sinusoid with frequency 2J(T - r0) and amplitude 5Te
j2^fo-7To)(T-To). We 

know rmax and rmin approximately since we assume that the altitude, antenna beamwidth, 

and grazing angle of the radar are known. We also assume that (rmax-rmin) < T0. Then for 

-T0/2 + Tmax < t < T0/2 + Tmin, the scatterers of the target at different ranges correspond to 

different frequencies of the signal d(t), while the RCS's of the scatterers are proportional to 

the complex amplitudes of the corresponding sinusoids. The ranges and RCS's of the target 

scatterers are the 1-D target features. 

10.2.2    Curvilinear Synthetic Aperture Radar 

We now describe the 3-D data model for the curvilinear synthetic aperture radar. The 

cross-range and height resolution of an ordinary ranging radar is limited by its antenna 

beamwidth. For an airborne or spaceborne system, a narrow antenna beamwidth requires 
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an antenna that may be too large to be carried on board of the airplane or the spacecraft. 

Curvilinear spotlight-mode SAR avoids this requirement by collecting coherent radar returns 

while viewing a target from many different azimuth and elevation angles. (A possible curvi- 

linear aperture is shown in Figure 10.1.) By properly processing the return signals, we can 

also achieve high resolution in both cross-range and elevation. 

A broadside data collection geometry in a spotlight-mode synthetic aperture radar (SAR) 

is shown in Figure 10.2 [13]. The XYZ coordinate system is centered on a small patch of 

ground, where a target is located. The ground is illuminated by a narrow radio frequency 

(RF) beam from the moving radar that rotates (with radius i?0) around the coordinate 

origin. In Figure 10.2, R denotes the distance between the radar and a scatterer at the 

position (x,y,z), and 9 and 0 are the azimuth and elevation angles of the radar relative to 

the XYZ coordinate system. We assume that 9, 0, and RQ are known. 

The range R of the scatterer located at (x, y, z) can be written as 

1 /9 

R = [(RQ cos 9cos<f>- xf + {Ro sin 9 cos 0 - y)2 + {Ro sin 0 - zf\     . (10.5) 

Under the conditions ^ < 1, ^ < 1, and ^ < 1, we have 

R   m   Ro 
x y z        ,    x2 + y2 + z2 

1 cos0cos0- —-sin0cos0- — sin 0-1 ^  
Ro Ro Mo liH 

(x cos 9 cos 0 + y sin 9 cos 0 + z sincj))2 

2RI 
(10.6) 

Let tp = <j) - 0o, where 0O is the average of all <j) used to form the synthetic aperture. For 

very small if), we have 

cos 0 w cos 0o - (sin 0O)'0, (1°-7) 

sin 0 « sin 0O + (cos 0O)'0- (10.8) 

For very small 9, we have cos 9 » 1 and sin 9 « 9. Then keeping first-order terms yields 

x2 sin2 0 + x2 sin2 9 cos2 0 + y2 sin2 0 + y2 cos2 9 cos2 0 + z2 cos2 0 

«   {{x2 + y2) sin 0O] sin 0 + [{y2 + z2) cosfo] cos 9 cos 0 + [(z2 - z2) sin 0O cos 0O]^1O.9) 
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We also have 

2xy cos 9 sin 9 cos2 <£ + 2yz sin 9 coscf) sin cj) + 2xz cos 9 cos </> sin </> 

«   2(a;y cos </>0 + yz sin <£0) sin 9cos<f> + {2xz sin (/>0) cos 0 cos (j) + (2xz cos2 </>0M.10.10) 

Hence i? can be simplified as 

R& Ro- xcos9cos(ß-y sin 0 cos (j) - 5 sin <?!>, (10.11) 

where 
-                [(a:2 - z2) sin 0O cos fa - 2xz cos2 <fto](0 - <f>0) Mm^ 

RO = RQ-\ go" ^IU.IZJ 

X-^ 1  -(^ + ^2)cos^ + 2^sin^; (10.13) 

xycosfo + yzsinfo nnu\ 
y = y+ , (1U.14) 

/to 

and 
C^ + lflsinfr (        } 

Note that the second terms of the right sides of (10.12), (10.13), (10.14), and (10.15) are due 

to the range and elevation curvature effects and can be neglected for large RQ. 

Let r0 = ^f1- Since r=2f, then from (10.4), we have 

j4(7r/0 - 7TQ + 7t) ^ _ flo _ - CQS e cos (f>-y sin 9 cos (f>-z sin 0) 

(10.16) 

where  5Ii3/)Z  is  proportional to  the  RCS  of the  scatterer  located  at  (x,y,z).      For 

4(TT/O - 7T0 + 7t)(Äo - Äo)/c < 2?r, where |t - r0| < T0/2, we can write (10.16) as 

d{t, 9, ct>) « ^e^«-^^, (10.17) 

where 
=    4(^/0 ~ 7T-Q + 7*)cos e cos ^ (10.18) 

x ~~ c ' 

_    4(TT/O - 7TQ + jt) sin 0 cos 0 (10.19) 
y c 
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and 
4(TT/O - 77o + 7*) sin 4> _     *VKJQ -7/0-1-71; bin y (10.20) 

c 

Note that d(t, 6, <p) is a 3-D complex sinusoid. The frequencies of the 3-D sinusoid correspond 

to the 3-D location (x, y, z) of the scatterer, while the amplitude is proportional to its RCS. 

Note also that (x, y, z) is not the true location (a;, y, z) of the scatterer, but is close to (x, y, z) 

for large RQ [7]. When a target has multiple scatterers, d(t, 9, <f>) in (10.17) will be a sum of 

sinusoids. The 3-D locations and RCS's of the target scatterers are the 3-D target features. 

(Usually the samples on the t, 6, and <j> axes are uniformly spaced and hence the samples of 

tx, ty, and tz occur at the points of a polar grid.) 

Assume that a curvilinear aperture consists, of M different viewing angles and let 

Urr, Örr,\M , denote the elevation and azimuth angle pairs of the M look angles of the 
J_ *r 771 ?     in J fix— 1 

radar. Let y{n,m), n = 0,1, • • •,N - 1, denote the one-dimensional (1-D) data samples 

obtained after dechirping from the mth viewing angle of the radar. Let 

J  =_4(^r/o-7ro + 7*n)>    n = 0,1, • • • ,7V - 1, (10.21) 
n c 

where tn denotes the time samples. Let tXm(n), tym(n), and tZm(n) denote the time samples 

of the mth look angle, where 

txM = in cos(0m) cos(^m), (10.22) 

tyjn) = tnsm(9m) cos(cßm), (10.23) 

and 

tZm(n)=tBsin(^m), (10.24) 

with m = 1,2, • • •, M and n = 0,1, • • •, N - 1. Then y(n, m) has the form 

y{n,m) = z(n,m) + e(n,m), (10.25) 

where e(n, m) denotes the noise and clutter and 

K 
z(n, m) = V ake

j2*[ht*m{n)+fktvm{n)+fktzm{n)\ (10.26) 
fc=i 
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with K being the number of scatterers. 

10.2.3    Aperture Errors 

For the above CLSAR data model, we have assumed that {9m, (j>m}m=\ and Ro(m) — -^o, 

m = 1,2, • • •, M, are known exactly. For a practical curvilinear SAR system, however, the 

radar positions relative to the XYZ coordinate system may not be known exactly due to at- 

mospheric turbulence and platform position uncertainty. In 2-D SAR imaging, it is generally 

assumed that the errors in {6m,(j)m}%=l are negligible and the errors in {i2o(m)}*f=1 cause 

phase errors along the synthetic aperture. In CLSAR, however, the errors in {6m, 4>m}^=\ 

may no longer be negligible since the aperture shape is critical for 3-D target feature extrac- 

tion. 

Our problem of interest herein is to compensate for the curvilinear aperture errors in 

{#o(m)}£f=1 and {0m, (j)m}m=\ and extract the 3-D target parameters {ak, fk, fk, /fe}f=1 from 

{y(n, m)}, n = 0,1, • • •, N - 1, m = 1,2, • • •, M. 

Before we present the AUTORELAX algorithm, let us first consider the approximations 

and the ambiguity problems in our data model in the presence of aperture errors. For the 

broadside data collection geometry shown in Figure 10.2, 6m is very small. For very small 

0m, we have sin(0m) w 9m and cos(0m) » 1. These approximations also hold for the true 

look angles of the radar. Then according to (10.22), (10.23), and (10.24), respectively, we 

have 

^«flcosjj, (10.27) 

2ym« t(cos Jj 0m, (10-28) 

and 

L^(smJj, (10-29) 

where {6m, <l>m}m=i denote the true look angles of the radar and 

x        4(?r/o - 7To + 7*) 
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Consider first the errors in {K}m=i when 9™ =0m and R0{m) = R0, m = 1, 2, • • ■, M. 

Let 

Let 

<ßm =(t>m +A0m. 

-4TT/0 

Then for very small A(j)m and TT/0 > 7(< - r0), where \t - TQ\ < T0/2, we have 

**m    =   i(cos(j)m) 
o o 

w   tcos </>m -t(sin <j)m)A^m 

o o 

«   tcos ^>m -to(sin <£o)A0m, 

(10.30) 

(10.31) 

(10.32) 

"Z/m t(cos <£m) 9m 
°        o 

t(cOS <f>m) 9rr 
°       o 

t0(COS (j)0) On (10.33) 

and 

tzm   =   t(sin^m) 
0       u       ° 

«   tsin </>m +t(cos cj)m)A(j)m 

»   tsin JTO+t0(cos J0)A^m, (10.34) 

where J0 is the average of all JTO, m = 1,2, • • •, M, and hence is a constant. Then 

afc exp {j2n(fktXm + fktym + fktzJ }    «   a* exp {J2TT  /fct COS Jm +/fei0 cos J0L +/fct sin 0mj | 

exp I j2n  -fki0 sin (f>0 +fkt0 cos </>0 A0, *} •      (10.35) 

Equation (10.35) shows that if A<f>m is a constant, then the phase error due to A<f>m and the 

phase of ak are ambiguous. Hence the phase of ak can never be determined exactly in the 

presence of A<f>m. If Acßm is a linear function of 0m, then fk and the linear phase error due 

to A(j)m are ambiguous and cannot be determined exactly. 
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o 

Similarly, we can analyze the errors in {0m}m=i when (f>m =(j>m and R0(m) = R0, m = 

1,2,---,M. Let 

0m4m+A0m. (10.36) 

For very small $m and A0m and for TT/0 > y(t - r0), where \t - r0\ < T0/2, we have 

iXm = icos Jm> (10.37) 

t„m « 4 cos 0O (L +A0m), (10.38) 

and 

tIm = isin 0m . (10.39) 

Then 

ak exp {j2Tr(fktXm + /fc<ym + /fciZm)}    «   afc exp | J2TT \fkt cos <£m +/fct0 cos (f>0dm +fkt sin 0TO j j 

exp lj2nfkt0 cos J0 A0mJ, (10.40) 

which shows that a constant A0m also results in the ambiguity between the phase error due 

to A0m and the phase of ak. Hence the phase of ak can never be determined exactly in the 

presence of A0m. Also, if A0m is a linear function of 0m, then fk and the linear phase error 

due to A0m are ambiguous and cannot be determined exactly. 
o ° 

Finally, consider the errors in Ro{m) when 0m =9m and <j>m =(j)m, m = 1,2, ••■,M. 

Let 

RQ{m)=Ro + ARo(m). (10.41) 

Replacing #0 in (10.12) with Ro{m) and for small AR0(m), large Ro(m), and TT/0 > j{t-rQ), 

where \t - r0| < T0/2, we have from (10.16) 

d(t, 0, </>) ~ 4^e^+öt*+^ V'"oAA°(m)_ (10.42) 

Hence the errors in {Ä0(^)}m=i result in Phase errors alon§ the synthetic aperture, which 

is consistent with the analysis in [13, 11]. Then the z(n,m) in (10.25) should, for this case, 
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be replaced by 

x(n, m) = Iy2akej2nlfk°txm{n)+f~k°tymin)+fk°tzrn{n)] \ eJVm, (10.43) 

where r]m = i0AR0(m) is the phase "error caused by AR0{m). Note that this phase error 

differs from the phase errors in (10.35) and (10.40) since it does not depend on the parameters 

of the Jfeth scatterer and is easier to deal with. If AR0(m) is a constant, then the phase error 

due to AR0(m) and the phase of ak are ambiguous.  Hence the phase of ak can never be 
o ~ 

determined exactly in the presence of ARo(m). If AR0(m) is a linear function of 0m, then fk 

and the linear phase error due to A.Ro(m) is ambiguous and cannot be determined exactly. 

We again assume that such linear errors in AÄo(m) are negligible in practice. 

10.3    The Relaxation-Based Autofocus Algorithm 

The AUTORELAX algorithm obtains the estimates {9m,(f>m,f)m}%=1 and 

{afc,/fc,/fc,/fc}fcLi, respectively, of the true values {0m,<£m,?7m}m=i and {ak, fk, fk, fk}k=i 

by minimizing the following nonlinear least squares (NLS) criterion: 

v M   N-\ 

c(U,fkJkJ-k}k 1,{^,^^X=i) = E E \y(n,m)-x(n,m)\\ (10.44) 
V l J fc-1 ' m=l n=0 

where 
xfn^ m) = ( V ake^lf^m(n)+htym(n)+fktzm(n)] I gjij™^ (10.45) 

U=i J 
with tXm(n), tyJn), and tÄm(n) defined in (10.22), (10.23), and (10.24), respectively. Note 

that as shown below, we will determine 6m and (f)m via a search method.   Hence there is 

no need to use the approximations such as those in (10.32), (10.33), and (10.34) for tXm(n), 

t m(n), and tZm(n), respectively.   When the noise e(n,m) is a zero-mean white Gaussian 

random process, the NLS estimates of the unknown parameters coincide with the maximum 

likelihood (ML) estimates of the parameters. When the noise is colored, the NLS estimates 

are no longer the ML estimates, but they still possess excellent statistical performance [14]. 

The minimization of (10.44) is a very complicated optimization problem. AUTORELAX is 

a relaxation-based optimization method that can be used to minimize (10.44).   Before we 

present the AUTORELAX algorithm, let us consider the following preparations. 
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Assume first that the target feature estimates {ak, fk,h> fk)k=\ are Siven- Then #m, <j>m, 

and fjm, m = 1,2, • • •, M, can be determined by minimizing the following Cm with respect 

to 6m, <j)m, and rjm, m = 1,2, • • •, M, where 

N-l 

cm{em,(j)m,vm) = E !</(™,™)-£i(n,™)l2> (10-46) 

where xi(n, m) has the same form as x(n, m) in (10.45) except that {ak, fk, fk, h}k=i are re- 

placed by {dfc, fk, fk, }k}k=v To simplify the optimization of Cm, we determine {0m, ^m}*f=1 

and {^m}^! iteratively as follows: 

Step (1): Obtain 0m and #m, m = 1,2, • • •, M, by minimizing the following Cmi with 

respect to 9m and </>m, where 

JV-l 

E 
n=0 

Cmi (e^tm) =  E |y(»,"») " M",™)|2 , (10-47) 

where fi(n,m) has the same form as z(n,m) in (10.26) except that {ak, fk, fk, fk}k=i are 

replaced by {ak, fk, fk, fk}k=i- 
o 

When there are errors in both the elevation and azimuth directions, we can estimate <j)m 

and im by the alternating minimization approach, i.e., by iteratively fixing the estimate </>m 
o ° 

of (j)m and minimizing Cmi with respect to 6m, and then fixing the estimate 0m of $m and 

minimizing Cmi with respect to 4>m until "practical convergence". The "practical conver- 

gence" in the alternating minimization approach is determined by the relative change of the 

cost function Cmi. In the numerical examples, we terminate the iteration when the relative 

change of the cost function Cmi between two consecutive iterations is less than 10"3. When 

there are errors in only one angular direction, i.e., either 0m or ^m is to be determined, then 

the minimization of Cmi is a simple one-dimensional search problem. 

Step (2): Determine {fjm}m=i bY minimizing the following cost functions Cm2: 

N-l. 2 

Cm2W=Ek"^)-^(n,rny?m   , (10-48) 
n=0 
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where 

K 

I 
fc=i 

g2(n, m) = J2 ake
j2^kL^n)+'hi^{n)+hi^{n)],    n = 0,1, • • •, N - 1, m = 1,2, •• -,M, 

(10.49) 

and im(n), ttfm(n), and iZra(n) are the same as tXm{n), tVm(n), and tZm(n), respectively, 

except that {em,<ßm}%=l are replaced by {§mJm}%=l, obtained in Step (1). This step is 

similar to [11] and we have 

where 

and 

Z2„ 

fjm = angle(zfmym),    m = l,2,---,M, 

1/(0,m)   !/(l,m)   •••   2/(AT-l,m) 

f2(0,m)   ^(l,m)   •••   %(JV-l,m) 

(10.50) 

(10.51) 

(10.52) 

Note from (10.50) that we do not need the search over parameter space to determine {fjm}m=i 

and hence the errors in {Ro(m)}^=1 are easier to deal with than those in {6>m,<£m}£f=1. 

Step (3): Repeat Step (1) by replacing y(n,m) with y{n,m) = y(n,m)e-™m, m = 

1,2, • • •, M, where {fjm}m=i are determined in Step (2). 

Step (4): Repeat Steps (2) and (3) until "practical convergence", which is determined 

by the relative change of the cost function Cm in (10.46) between two consecutive iterations. 

In the numerical examples, we terminate the repetition of Steps (2) and (3) when the relative 

change of Cm is less than 10~3 between two consecutive iterations. 

If the errors in {Ro{m)}%=1 are known to be negligible, then Step (1) alone is sufficient 

for the autofocusing. 

Assume next that the aperture parameter estimates {9m,<l>m,fim}m=i are Siven- Then 

the problem becomes the target feature extraction problem considered in [7]. As shown in 

[7], the estimates {ak, fk, fk, /Jf=1 of {ak, fk, fk, /fc}f=1 can be obtained with the RELAX 

algorithm by equivalently minimizing the following NLS criterion [7]: 

K   s u  N-l 

F({ak,fkJkJk}k=1) = EE \y{n,m) - z3{n,m)\  , 
^ '        m=l n=0 

(10.53) 
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where y{n,m) = y(n,m)e-jfim and z3(n,m) has the same form as z(n,m) in (10.26) except 

that tXm(n), tym(n), and tZm(n) are replaced by iXm(n), ttfm(n), and iZm(n), respectively, 

which are determined by {§m, ^m}m=i instead of {6m, </>m}m=i- 

The RELAX algorithm minimizes the cost function F in (10.53) efficiently by letting 

only the parameters of one target scatterer vary and fixing all others at their most recently 

determined values. Let 

Fk (ak,fk,fkJk) = EE \Un,m) - a4e^^m(»)+/^(»)+A..m(n)]|  , (10.54) 
m—1 n=0 

where iXm(n), iym{n), and iZm(n) are the same as tXm(n), tym{n), and tZm(n), respectively, 

except that {6m, (t>m}^=1 are replaced by {§m, #m}*f=i, and 

K 

i=l,i^k 

Then minimizing Fk in (10.54) with respect to ak yields the estimate ak of afc: 

yjw    yfzlVk{n m)e~i2*Vküm(n)+fkiym(n)+hi*mW\ 

(10.55) 

-t. > 

and 

{/fc,/fc,/fc} = arg max 
JkJkJk 

fk=fkifk—fk'fk—fk 

M    N-l . . . - -      ,   v, 
^   \^ y. (n m)e-i2T[/fctIm(n)+/fctym(n)+/fctJ!m(n)] 

m=l n=0 

(10.56) 

(10.57) 

To speed up the RELAX algorithm via utilizing FFT, we proposed in [7] a Cartesian 

grid mapping approach by approximating {iXm(n),iym{n),iZm{n)}m=\ on a Cartesian grid. 

When the Cartesian grid is fine enough, the errors introduced by the approximation are 

negligible. In this paper, we use a crude Cartesian grid and the FFT method to obtain an 

initial estimate of the parameters and then minimize (10.57) via a multidimensional search 

method, such as the FMINV function in PV-WAVE. The latter approach uses less computer 

memory and is more accurate. 

Let K denote the intermediate number of scatterers. Then the steps of the RELAX 

algorithm for 3-D target feature extraction via the curvilinear SAR are: 

Step [1] : Assume K = 1. Obtain {di,A,/i,/J from y(n,m), n = 0,1, • • •,iV - 1, 

m = !,-••, M. 
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Step [2] : Assume K = 2. Obtain {y2{m.n)} with (10.55) by using {di,/i,/i,/i} 

obtained in Step [1]. Obtain {d2, f2, f2, f2} from {y2(n,m)}. Next, compute (yi(n,m)} 

with (10.55) by using {&2J2J2J2} and redetermine {di,/i,/i,/i} from {yi(n,m)}. 

Iterate the previous two substeps until "practical convergence" is achieved (to be dis- 

cussed later on). 

Step [3] : Assume K = 3. Compute {y3(«,rn)} by using {ak, fk,fkJk}l=i ob- 

tained in Step [2]. Obtain {a3J3,}3,f3} 
from {yz{n,m)}. Next, compute {yi{n,m)} by 

using {akJk,}k,fk}k=2 and redetermine {Äi,/i,/i,/i} from {yi(n,m)}. Then compute 

{y2{n,m)} by using {akJk,fk,h}k=i,z and redetermine {o;2,/2,/2,/2} from {y2{n,m)}. 

Iterate the previous three substeps until "practical convergence". 

Remaining Steps: Continue similarly until K = K. (Whenever K is unknown, it can 

be estimated from the available data, for instance, by using generalized AIC rules which are 

particularly tailored to the RELAX method of parameter estimation. See, e.g., [14].) 

The "practical convergence" in the iterations of the above RELAX method may be deter- 

mined by checking the relative change of the cost function F ({ak, fk, fk, fk}k=ij in (10-53) 

between two consecutive iterations. In our numerical examples, we terminate the iterative 

process in each of the above steps when the aforementioned relative change is less than 10~3. 

Our numerical examples show that the iterations usually converge in a few steps. 

Finally, the relaxation-based autofocus (AUTORELAX) algorithm can be described with 

the following steps: 

Step 1: Extract the target features {ak, fk,fk, / Jf=1 with the RELAX algorithm from 

an initial curvilinear aperture by assuming that {rjm = 0}£f=1. 

Step 2: Update the curvilinear aperture {6m, <M£f=i and the Phase error {^}m=i with 

Steps (1) - (4). (If {Vm}m=i is known to be negligible, then only update {6m, </>m}m=i with 

Step (1).) 

Step 3: Redetermine the target parameters with the RELAX algorithm by using the 

curvilinear aperture {§m,4>m}^=l and {r)m}£f=1 obtained in Step 2. 

Step 4: Repeat Steps 2 and 3 until "practical convergence". 
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The "practical convergence" of AUTORELAX is determined similarly to that of the 

RELAX algorithm. Since a minimization is performed at every iteration, the value of the cost 

function C in (10.44) cannot increase. As a result, under mild conditions, the AUTORELAX 

algorithm is bound to converge to at least a local minimum of C [14]. The local minimum 

may or may not be the global one depending on the data parameters. Our examples below 

show that AUTORELAX can be quite effective for autofocusing and feature extraction. 

10.4    Experimental and Numerical Results 

We first present an experimental example to show the performance of the AUTORELAX 

algorithm. The field data was obtained by the Deployable Signature Measurement System 

(DSMS), Carderock Division, Naval Surface Warfare Center, Bethesda, Maryland. The 

radar was carried on board of a helicopter. The radar carrier frequency is 9.449 GHz and 

the bandwidth 0.498 GHz. The data set was obtained with a curved aperture not exactly 

known but is roughly the same as the one shown in Figure 10.4(a), where there are 64 look 

angles and 64 samples per look angle. The radar was about 300 meters away from the ground 

target. The ground target consists of 13 corner reflectors on the ground plane and 7 corner 

reflectors mounted on a wooden tripod that is about 2.65 meters tall. The true distribution 

of the scatterers is shown in Figure 10.3, where the centers of the squares denote the locations 

of the scatterers in 3-D space and the length of each square is proportional to the modulus of 

the RCS of the corresponding scatterer. The triangles show the projections of the scatterer 

locations onto the ground plane and their sizes are also scaled to be proportional to the 

RCS's of the scatterers. 

Figure 10.4(b) shows the scatterer distribution obtained with the RELAX algorithm from 

the initial aperture shown in Figure 10.4(a). Figure 10.5(b) shows the scatterer distribution 

obtained with the RELAX algorithm from a manually adjusted aperture shown in Figure 

10.5(a). (This manually adjusted aperture was used in [7].) We note that as compared to 

Figure 10.3, the results in Figure 10.5(b) are obviously better than those in Figure 10.4(b). 

We now first consider autofocusing only in the elevation direction by assuming that 
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no errors exist in both the azimuth angles {Mm=i and the distances {R0{m)}^=v The 

AUTORELAX algorithm converges after 6 iterations. Figure 10.6 shows the target scatterers 

extracted by AUTORELAX with the search interval for {A^m}^=1 being ±0.34°. Comparing 

Figures 10.4(b) and 10.5(b) with Figure 10.3, we find that AUTORELAX works well and 

the AUTORELAX results are slightly better than those obtained by using the manually 

adjusted aperture. Figure 10.7 shows that the manually adjusted and autofocused apertures 

fit quite well after adding a line to the former. Since the results in Figure 10.6(b) are better 

than those in Figure 10.5(b), it appears that a linear phase error (in (j)m as a function of 0m) 

was introduced in the manually adjusted aperture. The linear phase error can cause shifts in 

fk and the amount of shift is different for different scatterer k, as can be seen from (10.35). 

Consider next autofocusing in both the elevation and azimuth directions by assuming that 

no errors exist in {Ro{m)}^v The AUTORELAX algorithm converges after 7 iterations. 

Figure 10.8 shows the results obtained with the search intervals for {A<£m}£f=1 and {A0m}m=1 

being ±0.34° and ±0.006°, respectively. Compared with the results obtained by autofocusing 

only in the elevation direction, we find that autofocusing in both directions provides little 

further improvement to the accuracy of the estimated target parameters in this example. 

Hence for this example, it appears that the aperture errors mainly occur in the elevation 

direction. 

For this experimental example, we have also used AUTORELAX to extract target fea- 

tures when we assumed that errors exist in both {0m,0m}£f=1 
and {Ro(m)}m=v Again, as 

compared with Figure 10.6(b), we have noticed little change in the extracted target param- 

eters. It could be that DSMS has already done a good job compensating for the errors in 

{Ro(m)}%=l with some traditional method so that they are now negligible as compared with 

the errors in {(f)m}M 
771=1' 

Finally, we use a simulation example to show that the accuracy of target feature extrac- 

tion via CLSAR is very sensitive to the accuracy of the curvilinear aperture. We assume 

that there are 20 scatterers with a similar distribution to that in the experimental example 

above. The true aperture is shown in Figure 10.9(a) and the scatterer distribution is shown 

in Figure 10.9(b). Here we consider the case where the aperture errors exist only in the ele- 
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vation direction. Figure 10.10(b) shows the scatterer distribution obtained with the RELAX 

algorithm from the initial aperture shown in Figure 10.10(a). We note that the scatterer 

distribution in Figure 10.10(b) is quite different from the true one in Figure 10.9(b). 

When used with the simulation data, AUTORELAX converges after four iterations. 

Figure 10.11 shows the autofocused aperture and the scatterer distribution obtained with 

AUTORELAX. We see that the scatterer distribution obtained by AUTORELAX is almost 

the same as the true one. We also notice that the shape of the autofocused aperture is closer 

to the true one than the initial aperture. The constant difference between the autofocused 

and the true apertures will cause phase errors in {afc}f=1, which cannot be eliminated due 

to the ambiguity problems discussed in Section 10.2.3. 

10.5    Conclusions 

This chapter introduces a relaxation-based autofocus (AUTORELAX) algorithm to es- 

timate the aperture errors in CLSAR. The AUTORELAX algorithm can be used to extract 

the 3-D target features more accurately via CLSAR in the presence of unknown curvilinear 

aperture errors. The experimental and numerical results have shown that AUTORELAX is 

quite an effective method for autofocusing and 3-D target feature extraction. 

Reference 

[1] L. C. Graham, "Synthetic interferometer radar for topographic mapping," Proceedings 

of the IEEE, vol. 62, pp. 763-768, June 1974. 

[2] R. Gens and J. L. V. Gendren, "SAR interferometry - issues, techniques, applications," 

International Journal of Remote Sensing, vol. 17, pp. 1803-1835, July 1996. 

[3] J. Li, Z.-S. Liu, and P. Stoica, "3-D target feature extraction via interferometric SAR," 

IEE Proceedings on Radar, Sonar and Navigation, vol. 144, April 1997. 

[4] K. Knaell, "Three-dimensional SAR from curvilinear apertures," SPIE Proceedings on 

Optical Engineering in Aerospace Sensing, vol. 2230, pp. 120-134, Orlando, FL, April 

1994. 

220 



[5] K. Knaell, "Three-dimensional SAR from practical apertures," SPIE Proceedings on 

Optical Engineering in Aerospace Sensing, San Diego, vol. 2562, pp. 31-41, 1995. 

[6] K. Knaell, "Three-dimensional SAR from curvilinear apertures," Proceedings of the 1996 

IEEE National Radar Conference, pp. 220-225, Ann Arbor, MI, May 1996. 

[7] J. Li, Z. Bi, Z.-S. Liu, and K. Knaell, "Using curvilinear SAR for three-dimensional 

target feature extraction," IEE Proceedings on Radar, Sonar and Navigation, vol. 144, 

pp. 275-283, October 1997. 

[8] P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, Jr., "Speckle processing methods for 

synthetic-aperture -radar phase correction," Optics Letters, vol. 14, pp. 1-3, January 

1989. 

[9] P. H. Eichel and C. V. Jakowatz, Jr., "Phase-gradient algorithm as an optimal estimator 

of the phase derivative," Optics Letters, vol. 14, pp. 1101-1103, October 1989. 

[10] D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, Jr., "Phase gradient 
autofocus - a robust tool for high resolution SAR phase correction," IEEE Transactions 

on Aerospace and Electronic Systems, vol. 30, pp. 827-835, July 1994. 

[11] Z.-S. Liu and J. Li, "SAR motion compensation and feature extraction via MCRELAX," 

Journal of the Optical Society of America A, March 1998. 

[12] D. C. Munson, Jr., J. D. O'Brien, and W. K. Jenkins, "A tomographic formulation 

of spotlight-mode synthetic aperture radar," Proceedings of the IEEE, vol. 71, pp. 917 

-925, August 1983. 

[13] C. V. Jakowatz, Jr., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson, 

Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach. Norwell, MA: 

Kluwer Academic Publishers, 1996. 

[14] J. Li and P. Stoica, "Efficient mixed-spectrum estimation with applications to tar- 

get feature extraction," IEEE Transactions on Signal Processing, vol. 44, pp. 281-295, 

February 1996. 

221 



Figure 10.1: A possible curvilinear aperture for CLSAR. 
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Figure 10.2: A broadside data collection geometry. 

Figure 10.3: True scatterer distribution for the experimental example. 
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Figure 10.4: (a) Initial curvilinear aperture for the experimental example,  (b) 3-D plot of 

K = 20 scatterers extracted from the initial aperture in (a) with RELAX. 
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Figure 10.5:  (a) Manually adjusted aperture for the experimental example,   (b) Scatterer 

distribution obtained by using RELAX with K = 20 and the aperture in (a). 
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Figure 10.6: Autofocused curvilinear aperture and scatterer distribution obtained with AU- 

TORELAX by autofocusing only in the elevation direction and using K = 20 for the exper- 

imental example, (a) Autofocused curvilinear aperture, (b) Scatterer distribution. 
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Figure 10.7: (a) Manually adjusted and autofocused curvilinear apertures for the experi- 

mental example, (b) Fitting the manually adjusted aperture to the autofocused aperture by 

adding a line to the former. 
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Figure 10.8: Autofocused curvilinear aperture and scatterer distribution obtained with AU- 

TORELAX by autofocusing in both the elevation and azimuth directions and using K = 20 

for the experimental example, (a) Autofocused curvilinear aperture, (b) Scatterer distribu- 

tion. 
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Figure 10.9:  (a) True curvilinear aperture for the simulation example,   (b) True scatterer 

distribution for the simulation example. 
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Figure 10.10:   (a) Initial curvilinear aperture for the simulation example,    (b) Scatterer 

distribution obtained from the initial aperture in (a) by using RELAX with K = 20. 
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Figure 10.11: Autofocused curvilinear aperture and scatterer distribution obtained by us- 

ing AUTORELAX with K = 20 for the simulation example, (a) Autofocused curvilinear 

aperture, (b) Scatterer distribution. 
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11.    An Efficient Algorithm for Time Öelay Estimation 

11.1    Introduction 

Suppose that we have a single sensor receiving a superimposition of attenuated and de- 

layed replicas of a known signal plus noise. From the received data we want to estimate 

the arrival times of the various replicas and their (complex or real) attenuation coefficients 

(gains). This is the well-known time delay estimation problem which occurs in many fields 

including radar, active sonar, propagation modeling in wireless communications, nondestruc- 

tive testing, geophysical/seismic exploration, and medical imaging. Another related problem 

is Time Difference of Arrival (TDOA) estimation of a signal that has been intercepted by 

multiple sensors where the signal waveform is unknown or random in nature, which occurs 

in passive source localization systems. In this paper, we will concentrate only on time delay 

estimation based on one sensor with known signal shapes. 

The most well-known time delay estimator is the matched filter approach. If there is 

only one signal or the overlapped signals are separated in time by an interval that is much 

greater than the width of the signal autocorrelation function, then the matched filter is 

the optimal estimator when the noise is white Gaussian [1] . The resolution capability 

of the matched filter approach depends on the signal bandwidth and the larger the signal 

bandwidth, the better the resolution. However, in many situations there exist some practical 

limitations on increasing the bandwidth of the transmitted signals. How to resolve closely 

spaced overlapping noisy echoes has attracted the attention of researchers from many fields 

for several decades. 

Several approaches have been suggested for this problem and many of them benefit from 

the recent development of high resolution sinusoidal frequency estimation and Direction of 

Arrival (DOA) estimation techniques. For example, MUSIC [2] is employed in [3] to estimate 

time delays with multiple experimental data and the approach requires that the signal gains 

be random in order to get a nonsingular covariance matrix. Sinusoidal frequency estima- 

tion techniques such as MUSIC [2], Linear Prediction [4], and MODE [5] are applied to the 
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time delay estimation problem in [6, 7, 8]. However, these approaches are only applicable 

to signals with flat (rectangular) band-limited spectra. Several Maximum Likelihood (ML) 

approaches have also been suggested for this problem. Multidimensional global optimization 

algorithms are presented in [9, 10, 11] to analyze a special class of ocean acoustic data that 

has very oscillatory autocorrelation functions. An efficient approach based on the Expecta- 

tion Maximization (EM) algorithm [12] is proposed in [13] that decouples the complicated 

multidimensional optimization problem into a sequence of multiple separate one-dimensional 

optimization problems. However, its convergence depends highly on the initialization method 

used and no systematic initialization method is given in [13]. 

In this chapter, we first formulate the time delay estimation problem as a nonlinear 

least squares (NLS) fitting problem in the frequency domain. Then a weighted Fourier 

transform based relaxation method (referred to as WRELAX) is presented for finding the 

global minimum of the complicated multimodal NLS cost function. The most striking feature 

of the WRELAX algorithm is that it decouples the multidimensional optimization problem 

into a series of one-dimensional optimization problems in a conceptually and computationally 

simple way. Compared with other existing algorithms, WRELAX is more systematic and 

efficient and has less limitations on the signal shapes. The WRELAX algorithm is also 

extended to the case of multiple looks for different scenarios (i.e., fixed delays but arbitrary 

gains and fixed delays and gains). Simulation results show that the mean square error (MSE) 

of WRELAX is very close to the corresponding Cramer-Rao bound (CRB) for a wide range 

of signal-to-noise ratios (SNRs). The new algorithm is also successfully applied to detecting 

and classifying roadway subsurface anomalies by using an ultra wideband ground penetrating 

radar. 

The remainder of the chapter is organized as follows. In Section 11.2, we describe the data 

model and formulate the problem of interest. Section 11.3 presents the WRELAX algorithm. 

In Section 11.4, we extend the WRELAX algorithm to two cases of multiple looks. Some 

numerical and experimental results are given in Section 11.5. Section 11.6 concludes the 

chapter. The CRB analysis is included in the appendix. 
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11.2    Problem Formulation 

Time delay estimation is a well-known traditional problem occurring frequently in radar, 

active sonar, and many other fields. In this problem, the waveform received at a single 

sensor consists of delayed replicas of the transmitted signal with different gains. The gains 

reflect the scattering property of the targets or multipath channel transmission features. The 

received signal waveform y(t) can be described as 

L 

I 
1=1 

y(i) = $>,«(*-r,) + e(i),    0<i<T, (11.1) 

where s{t), 0 < t < T0, represents the known transmitted signal, y{t) denotes the received 

signal, which is composed of L replicas of s{t) with different (complex or real valued) gains 

{m}iLi and real valued delays {r'tf=i' and eW is the receiver noise' which is modeled as a 

zero-mean Gaussian random process. 

Usually, the above received analog signal is sampled for digital signal processing. To 

avoid aliasing, we must sample y(t) according to the bandwidth of s(t). Let Bs denote the 

double-sided bandwidth of s(t). Then y(t) must be sampled with the sampling frequency /, 

satisfying 

fs>Bs. (11-2) 

After A/D conversion, the sampled received signal has the form 

y(^) = E^s(nT^-Ti) + e(nTs)'    n = 0,l,---,N-l, (11.3) 
i=i 

where Ts is the sampling period and is equal to the reciprocal of the sampling frequency /,. 

Our problem of interest herein is to estimate {ahTi}f=l from {y(nTs)}%~o with known 

s{t), 0 < t < T0, or {s(nT,)}^o- 

Although we could solve the estimation problem in the time-domain [3, 9, 10, 13], we shall 

consider below solving the problem in the frequency domain and propose a relaxation based 

algorithm that requires a sequence of Fourier transforms on some weighted data vectors. 

This algorithm is referred to as the WRELAX algorithm. 
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Let Y(k), S(k), and E(k), k = -N/2,-N/2 + 1,..., N/2 - 1, denote the discrete Fourier 

transforms (DFT's) of y(nTs), s{nTs), and e(nTs), respectively. Provided that aliasing is 

negligible, then Y(k) can be written as : 

Y(k) = S(k) $>ie>'w'fc + E(k), (11.4) 

where 

W, = -^. (11-5) 
'        NTS 

v      ' 

Note that the time delay estimation problem is similar to the sinusoidal parameter es- 

timation problem except that the exponential signals are weighted by the known signal 

spectrum. If we divided both sides of (11.4) by S(k), the problem would become identical 

to the sinusoidal parameter estimation problem. Yet we should not do so for the following 

reasons: first, S(k) could be zero for some k; second, the noise E(k)/S(k) will no longer be a 

white noise even when E(k) is white; third, when E(k) is a white noise, the larger the S(k) 

at sample k, the higher the signal-to-noise ratio (SNR) of the corresponding Y(k) and hence 

dividing Y(k) by S(k) will de-emphasize those Y(k)'s that have high SNRs. Because of this, 

many well-known sinusoidal parameter estimation algorithms, such as MUSIC [2], ESPRIT 

[14], PRONY [15], are not directly applicable to our problem of interest. Using MODE [5] 

would require a multidimensional search over a parameter space because we can no longer 

reparameterize the MODE cost function via the coefficients of a polynomial. 

11.3    The WRELAX Algorithm 

We consider below estimating the unknown parameters by minimizing the following NLS 

criterion: 

7V/2-1 

C1({o,,w«}f=1)=    £ 
k=-N/2 

y(fc)-S(A;)Ea«e,'a"* 
i=i 

(11.6) 
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When e{nTs) is a zero-mean white Gaussian random process, E(k) is also white since DFT 

is a unitary transformation. For this white noise case, the NLS approach is the same as 

the ML method. When E(k) is not white, however, the NLS approach is no longer the ML 

method. However, it has been shown in [16] that the NLS approach can still have excellent 

statistical accuracy. 

Minimizing Ci({a>i,ujt}f=1) with respect to the unknown parameters is a highly nonlinear 

optimization problem. The cost function has a complicated multimodal shape with a very 

small attraction domain, which makes it very difficult to find the global minimum. Below, we 

present a relaxation based optimization algorithm to obtain the NLS parameter estimates. 

Before we present our approach, let us consider the following preparations. Let 

1T 

Y(-N/2)   Y(-N/2 + l)   ■■■   Y(N/2-l)      , (11.7) 

= diag { S(-N/2)   S{-N/2 + 1)   • • •   S(N/2 - 1) } , (11.8) 

and 

E = 

a(wj) 

E(-N/2)   E(-N/2 + l)   ■■■   E(N/2-l) 

eM(-N/2)     eJw,(-N/2+l)     ...    gjwj(JV/2-l) 

where (-)T denotes the transpose. Denote 

Y, = Y-   £   <MSa(<2>0] 

(11.9) 

(11.10) 

(11.11) 

where {a;,a>i}i=li_^ are assumed to be given.   Consider first the case where {o-i}i=x are 

complex valued. Let 

b(w,) = Sa(w,),    Z = 1,2, •■-,£. (11.12) 

Then (11.6) becomes 

C72(a,,o;j)=l|Y,-a,b(w,)||:i (11.13) 
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where j| • || denotes the Euclidean norm. Minimizing C2(oi,,a>;) with respect to at yields the 

estimate &i of a.\ 

bH(w,)Y, 
<*l 

*H^y, (ii.i4) 
S\\2F 

where (-)H represents the conjugate transpose and || • \\F denotes the Frobenius norm [17]. 

Then the estimate ui of u)i is obtained as follows: 

b(o;f)b
g(a;;) 

bz.iutibbfiui)   l 

Yfb(a;;)b
g(a;,)Yt 

=   argm^      b^(Wl)b(Wl) 

aff(^)(S*Y02, (11.15) 

uji   =   arg mm 

arg max 

where we have used the fact that bff(wj)b(wj) =|| S ||| and hence is independent of ut. 

Hence u>i is obtained as the location of the dominant peak of the magnitude squared of 

the Fourier transform, |aH(^)(S*Yz)|
2, which can be efficiently computed by using the 

fast Fourier transform (FFT) with the weighted data vector S*Yj padded with zeros. An 

alternative scheme to zero-padding FFT is to find an approximate peak location first by using 

FFT without much zero-padding and then perform a fine search nearby the approximate 

peak location by, for example, the fmin function in MATLAB, which uses the Golden 

section search algorithm. With the estimate of ut at hand, at is easily computed from the 

corresponding complex height: 

a*(Wl)(S'Y,) 
Oil 

S||2F 

(11.16) 
U>j=U>i 

With the above simple preparations, we now present the WRELAX algorithm. 

Step (1): Assume L = 1. Obtain {u^&i}^ from Y by using (11.15) and (11.16). 

Step (2): Assume L = 2. Compute Y2 with (11.11) by using {u)h&i}i=\ obtained in 

Step (1). Obtain {wj,dj}i=2 from Y2. Next, compute Yi by using {a>j,aj}j=2 and then 

redetermine {u>i,&i}i=i from Yi. 
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Iterate the previous two substeps until "practical convergence" is achieved (to be dis- 

cussed later on). 

Step (3): Assume L = 3. Compute Y3 by using {iühäi}f=1 obtained in Step (2). Obtain 

{&1, ajz=3 from Y3. Next, compute Y: by using {a);, d*}f=2 and redetermine {£,, djj=i from 

Yr. Then compute Y2 by using {ui,on}i=it3 and redetermine {u>i,a>i}l=2 from Y2. 

Iterate the previous three substeps until "practical convergence". 

Remaining Steps: Continue similarly until L is equal to the desired or estimated 

number of signals. (Whenever L is unknown, it can be estimated from the available data, for 

instance, by using the generalized AIC rules which are particularly tailored to the WRELAX 

method of parameter estimation. See, for example, [16].) 

The "practical convergence" in the iterations of the above WRELAX method may be 

determined by checking the relative change of the cost function d^w;,^}^) in (11.6) 

between two consecutive iterations. The algorithm is bound to converge to at least some 

local minimum point [18]. The convergence speed depends on the time delay spacing of the 

signals. If the spacing between any two signals is larger than the reciprocal of the signal 

bandwidth, the algorithm converges in a few steps. As the spacing of the signals becomes 

closer, the convergence speed becomes slower. 

Once we have obtained the estimates {ui}^, the estimates {n}^ of {n}^ can be 

determined by using (11.5). 

At this point, we would like to point out the relationship between WRELAX and the 

conventional matched filter approach. The matched filter approach can also be formulated 

in the frequency domain. Let 

F(u) = |a*(a;)(S*Y)|2 . (11.17) 

The matched filter method searches for the L largest peak positions of F(u) as the estimates 

of {tjji}f=l, and then the gains are determined as follows 

a*(w,)(S*Y) 
Oil S 12 

,    Z = 1,2,---,L. (11.18) 
Wl=ü>l 

Hence when there is only one signal, this one-dimensional matched filter approach is equiv- 
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alent to the WRELAX algorithm. However, when there are multiple signals that are not 

well separated, this conventional matched filter approach will perform poorly. In this case, 

a multidimensional matched filter method [9] could be used and the method is equivalent 

to the NLS fitting approach [9]. The WRELAX algorithm decouples the multidimensional 

matched filters into a sequence of one-dimensional matched filters. Thus the excellent pa- 

rameter estimation performance of the NLS fitting approach can be achieved at a much lower 

implementation cost. 

Similar to the WRELAX algorithm, the EM algorithm proposed in [13] also transforms 

the multidimensional optimization problem into a series of one-dimensional optimization 

problems. The detailed implementations of the algorithms, however, are quite different. The 

EM algorithm consists of two steps, the E (Estimate) step and the M (Maximize) step. The 

idea is to decompose the observed data into their signal components (the E step) and then 

to estimate the parameters of each signal component separately (the M step). The algorithm 

is iterative, using the current parameter estimates to decompose the observed data. At each 

E step, the residue error corresponding to the current estimates is also decomposed among 

different signal components. Although initial conditions are needed by EM, no systematic 

initialization method is given in [13]. We have also found that the performance of EM is very 

sensitive to the initial conditions used. Even with the same initial conditions, our numerical 

examples show that the convergence speed of EM can be much slower than the last step of 

WRELAX. Further, WRELAX does not require any initial condi tions before its iterations 

and the first L - 1 steps of WRELAX can provide an excellent initial condition for Step L. 

Consider next the case where {ai}f=l are real-valued. Minimizing C2{ai,ui) with respect 

to ai and ui yields 
R0 la#7,,,.VS*V,M 

(11.19) 
Re[ag(u;0(S*Y,)] 

II s \\l &l ~ n o i|2 
Ul=UJl 

where Re(X) denotes the real part of X, and 

^ = argmaxRe2[aH(o;;)(S*Y()]. (11.20) 

The WRELAX algorithm could also be implemented in the time domain, which is based 
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on the correlations. However, we prefer to use the frequency domain version of WRELAX. 

For the time domain version, we could be restricted to using the discrete values of {r;}f=1 if 

we only know the sampled version of s(t). For this case, if a more accurate delay estimate 

is required, then one has to resort to interpolation [9]. This inconvinence can be avoided by 

transforming the problem to the frequency domain, where {r/}f=1 can take on a continuum of 

values. Even without considering the additional interpolation cost, the computational load 

of the time domain correlation-based WRELAX is heavier than that of the frequency domain 

WRELAX, which can be easily implemented by using the currently available dedicated high 

performance FFT chips, such as TMC2310 [19] and A41102 [20]. 

11.4    The Extended WRELAX Algorithms for Multiple Looks 

Next we extend the above WRELAX algorithm to the case of multiple looks. Two scenar- 

ios will be considered, which include 1) fixed delays but arbitrary gains and 2) fixed delays 

and fixed gains. In radar applications, the two cases correspond to two target fluctuation 

models [21]. 

11.4.1    Fixed Delays but Arbitrary Gains 

Consider the case where multiple pulses are transmitted and the ranges of target scat- 

tered remain the same but their gains change randomly during the observation interval. 

Let Y(m) be the DFT of the received vector due to the mth pulse. Then 

L 

I 
i=i 

Y(m)=X>tm)[Sa(w<)] + E(m)>    rn = l,2,...,M, (11.21) 

where a\m) denotes the gain of the Ith scatterers due to the mth pulse and the noise vectors 

{E(m)}£f=1 are assumed independent of each other. Our problem of interest is to estimate 

ja,(m),u;,) from \Y^}
M

   . 
I"'      '    11 l=l,..,L;m=l,...,M I Jm=l 

We now extend the WRELAX algorithm to this multiple look case. The extended WRE- 
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LAX algorithm minimizes the following NLS criterion: 

ciR0.«*}«^ «)=!JYW-i>|m)bw (11.22) 

where b(a>/) is defined in (11.12). 

Before we present the extended WRELAX algorithm, let us consider the following prepa- 

rations. Let 

L 

Y(m)=Y(m)_     £    ötMüi),      m=l,...,M, (11.23) 
ir=l,t^i 

where   ia^m\ui\ are   assumed   given.        Then   the   cost   function 
I   ' 1 i=\,...,L,v£l,m=\,...,M 

C3({afm),^}j=i))L;m=i   ^becomes 

M 

m=l 

(11.24) 

Minimizing (^({aj^.wj) with respect to the complex-valued {a[m)}^=1 and wj yields 

•(m), 

a (m) _ a^^KS'YW) 
S II2 (11.25) 

Wl=U>l 

and 

wj = arg max 
M 

z 
.m=l 

£ |a*(W,)(S*Y{m>)|a (11.26) 

Minimizing C4({a{m)}^i,wj) with respect to the real-valued {a[m)}m=1 and wz yields 

a .(m) 
Re[ag(a;;)(S*Y;m))] 

sil2. 
(11.27) 

Ull=Ull 

and 

d;, = argmax ( f) Re2 [a*(u,,)(S*Yfm))] (11.28) 
Lm=l 
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11.4.2    Fixed Delays and Gains 

When both the delays and gains of the target scatterers remain the same during the 

multiple look interval, we can derive an ML estimator when the noise is assumed to be a 

zero-mean colored Gaussian noise with an unknown covariance matrix Q. Note that although 

we could continue to use the NLS approach for the current problem, we prefer to take the 

noise statistics into account since we will show below that doing so in this case introduces 

little difficulties for sufficiently large M. For the former problems, modeling the noise with an 

unknown covariance matrix Q makes the ML approach ill-defined due to too many unknowns 

[22]. 

Let Y(m) be the DFT of the received data vector due to the mth pulse which can be 

written as 

Y(m)-^^b(^)+E(m),    m = l,...,M, (11.29) 
i=i 

where the noise vectors {E(m)}£f=1 are assumed to be zero-mean colored Gaussian random 

vectors with an unknown covariance matrix Q that are independent of each other. Let 

B = [b(wi)   b{u2)   ■■■   b{uL)]T, (11-30) 

and 

a = [ai   a2   ....   aL]
T ■ (11-31) 

Then 

Y<ro)=Ba + E(m',    m = l,2,...,M. (11.32) 

The log-likelihood function of Y(m) is proportional to (within an additive constant): 

{1       M r ^H^ 

Q-1^ E [Y(m) - H [Y(m) - Ba] } (1L33) 

where det(-) denotes the determinant of a matrix and tr(-) denotes the trace of a matrix. 

Consider first the estimate of Q and the unstructured estimate of C = Ba.  It is easy to 
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show that the estimate Q of Q is 

Q = ^ E [Y(m) - c] [Y<™> - cf, 

where C may be obtained by minimizing the following cost function: 

C5 = det 
1      M JJ 

_L £ (Y<m) - C) (Y(m) - CJ 
m=l 

Let 

R Y\ 

-.      M 

and 

M 

M 

m=l 

Then 

m=l 

G = ^ £ [Y(m) - ci [Y(m) - °r 
■*     m=l 

=   Ryy — CRyj — RyiC   + CC 

=   [C - Rn] [C - Ryi]H + Ryy - RyiRyx • 

To minimize det(G), we have 

C = R ■yi- 

Then using the C in (11.39) to replace the C in (11.34) yields 

Q = Ryy — RyiRy!- 

With these notations, the above C5 can be rewritten as 

C5   =   det [Ryy - CR* - RyiC
H + CCH] 

=    det[Ryy-RyiR& + (C-C)(C-C)H] 

=   det(Q)det[l + Q-HC-C)(C-C)H] 

=   det^fl + CC-C^Q-^C-C)], 

(11.34) 

(11.35) 

(11.36) 

(11.37) 

(11.38) 

(11.39) 

(11.40) 

(11.41) 
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where we have used the fact that det(I + AB) = det(I + BA) if the dimensions of A and B 

permit. Hence minimizing Cb is equivalent to minimizing 

C6({cWf=1)   =   [C-C]HQ-1[C-C] 

=   [Ba-CJ^Q-^Ba-C], (11.42) 

which is again a highly nonlinear optimization problem. 

We consider below using the relaxation based approach to minimize C6({ai,ui}l=l). Let 

Q = C -   Yl   &Müi)> (11.43) 

where {cci,uJi}f=li¥:l are assumed given. Then minimizing C6 becomes minimizing 

CM^i) = [CJ - a,b(w,)]H Q"1 pi ~ <*Mui)] ■ (n-44) 

Consider first the case of complex-valued {c^}f=1. Minimizing C7(ahui) with respect to 

a.i and ivi yields: 

Oil    = 
bffQ-xQ 

b^Q^bM 

aff(o;z) (S*Q-^Q) 

Wl—UJl 

Q-ISa(wj)|' 

(11.45) 

Lül=iJl 

and 

u>i = arg max 
aif(^)S*Q-1Cz 

(11.46) 
Q-2Sa(w,) 

Consider next the case of real-valued {a,}f=1. Minimizing 67(01, wj) with respect to at 

and UJI yields 

Oil 

Refa^S-Q^O,] 

iQ-aSa(wj) I2 
(11.47) 

Wl=Wl 
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and 

(jji = arg max 
Re2 [a^S'Q^C, 

Q-3Sa(o;,) 
(11.48) 

In the above derivations, Q_1 plays the role of whitening the noise. A good estimate of 

Q requires a large number of independent data vectors (i.e., M should be large enough as 

compared with N). When M is small, the noise covariance matrix estimated from (11.40) is 

singular or near singular. At least N data vectors are needed to guarantee that the matrix 

Q is non-singular with probability one. 

Usually, the receiver noise e(t) in (11.1) can be modeled as a zero-mean stationary and 

ergodic Gaussian stochastic process. Let the covariance matrix corresponding to the sampled 

noise vector 

[e(0), e(Ts) ■■■ e((N-l)Ts)]
T be Qt, where the subscript "£" represents the covariance 

matrix of the noise in the time domain. Then Qt is a Hermitian and Toeplitz matrix. The 

frequency domain noise covariance matrix Q is related to Qt as follows 

Q = T Qt T
H, (11.49) 

where T is the DFT matrix, 

1 r = 
y/N 

iff 

(-71-)   a(-7r + 2TT/N)   ■■■   &{%-2TC/N) 

and 

a(w) = eM-N/2)     eJu(-N/2+l) eJu>(N/2-l) 

(11.50) 

(11.51) 

It can be shown that, in general, Q is no longer a Toeplitz matrix. However, we can use the 

Toeplitz property of Qt to improve the estimation performance. First, we can obtain Q by 

using (11.40). Then the estimate Qt of Qt can be obtained by using (11.49), which is 

4 = rH Q r. (11.52) 

Due to a finite number of data vectors, Qt is no longer a Toeplitz matrix. Although there 

are many ways to to modify Qt to obtain a Toeplitz matrix QST), in this paper we use the 
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following simple approach. Let qt(i,j) be the (i,j)th element of Q(. Define 

N-k 

f{k) 
1 

N-k 
^Qtihi + k),    fc = 0,l,---,JV-l. (11.53) 
t=i 

Then 

Q 
(T) 

f(0) f(l) 

P(l) ■•• 

f *(iV - 1)    ■• 

Using Q(T) instead of Q in (11.45)-(11.48), where 

•••     r(N-l) 

r(l) 

f*(l)       f(0) 

(11.54) 

(11.55) 

we obtain a new algorithm referred to as TWRELAX. The TWRELAX algorithm can greatly 

improve the estimation performance of WRELAX, especially when M is small as compared 

with N, as can be seen from the numerical examples below. 

11.5    Simulation and Experimental Results 

In this section, we will present numerical and experimental examples to demonstrate 

the performance of the proposed WRELAX algorithm. We first present several numerical 

examples for both single look and multiple look cases. The performance of the proposed 

algorithms is compared with the EM algorithm [13] and the CRB, which gives the minimum 

attainable variances for any unbiased estimators. Next, we test the new algorithm with the 

experimental data collected to analyze the subsurface structures of highways. 

In the numerical examples below, we use a windowed chirp signal, 

s(t) = w{t)ejß{t-^-)2,    0<i<T0, (11.56) 

where ß is the chirp rate and 

f 0.5-0.5cos(7rt/Tw), 

w(t) 

0<t<Tw, 

1, Tw < t < To — Tw, 

{ 0.5 - 0.5cos[7r(t - T0)/Tw],    T0-Tw<t<T0 , 

(11.57) 
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with Tw = To/10. 

In the following simulations, we use N = 64, ß = n x 1012, the signal bandwidth Bs = 

ßT0/ir, and the sampling frequency /, = 2BS (to avoid aliasing). T0 is chosen in such a way 

that T0 = (iV/2 - 1)TS. In this case, it can be shown that T0 = J^j^ = 3.937 fis, T = 

8.001 /is, Ts = 0.127 fis, Bs = 3.937 MHz, f8 = 7.874 MHz, and the resolution limit of 

the conventional matched filter method is generally considered to be around re = l/Bs = 

0.254 fis. 

In all of the examples below, we have used e = 0.001 to test the convergence of WRELAX. 

All data sequences are zero-padded to the nearest power of 2. For the simulation examples, 

we have N = 64, so zero-padding is not used. The one-dimensional search is performed in 

two steps, a coarse search using FFT followed by a fine search using the fmin function of 

MATLAB. In all of the simulation examples, complex valued gains are assumed. Real valued 

gains are used for the experimental example. The SNR of each signal replica is defined to 

be 101og10(|a;|2/(72) for the case of fixed gains, where a2 denotes the average noise power. 

For the case of arbitrary gains, {afm)}£f=1 are assumed to be independent complex Gaussian 

random variables with zero-mean and variance a2 (they are fixed for all Monte-Carlo trials) 

and the SNR is defined to be 101og10 [a2Ja2]. The MSE is obtained through 100 Monte-Carlo 

trials. 

Case A: Single Look 

Assume L = 2 signals are superimposed together with e*i = eJ7r/8, a2 = eJ*/4, TX = 

T0/8, r2 = T0/8 + re. The additive noise is zero-mean white Gaussian and SNR = SNRi = 

SNR2 = 10 dB. Hence the time delay spacing between the two signals is re. Even in 

this case, the conventional matched filter method fails to resolve the two signals, as can be 

seen from Figure 11.1(a), where the horizontal axis denotes the normalized time delay T/T 

and the two vertical lines indicate the true time delays of the two signals. However, using 

WRELAX we can resolve them very well. As pointed out before, the WRELAX algorithm 

can be viewed as transforming the multi-dimensional matched filters into a sequence of one- 

dimensional matched filters. The outputs of the two matched filters for all iterations are 

plotted in Figure 11.1(b), which illustrates the convergence process of WRELAX. At the 
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beginning of the iteration, the peak positions and the corresponding gain estimates obtained 

from the filter outputs differ from their true values (one gain estimate is larger and the other 

is smaller than the corresponding true gains). After several steps, they converge to the true 

time delays and gains. 

Now we change the time delay spacing of the two signals to 0.5re with the same gains as 

above. The MSEs using WRELAX are compared with the corresponding CRBs in Figure 

11.2, where SNR = SNRi = SNR2. From Figure 11.2, it can be noted that the MSEs 

obtained by using WRELAX approach the corresponding CRBs as the SNR increases. 

We have also tested the EM algorithm for this situation and found that it is very sensitive 

to the initial conditions used. If we use the conventional matched filter approach to obtain 

the initial conditions, EM will converge to some local minimum instead of the global one and 

the estimation performance is very poor. When we skip the first L - 1 steps of WRELAX 

and use the same initial values used for EM, WRELAX converges much faster than EM. 

The speedup ratio is 2.5 for the same signal used in Figure 11.2. If we add one more signal 

that is separated from the above two signals by re and 1.5re then the speedup ratio goes up 

to 4.0. 

Case B: Multiple Looks with Fixed Delays but Arbitrary Gains 

Consider the case of multiple looks with fixed time delays but arbitrary gains when 

the noise is a zero-mean white Gaussian noise with variance a\. In this example, L = 2, 

n = T0/8, and r2 = T0/8 + 0.5re. We use two data vectors obtained by M = 2 looks to 

estimate the fixed delays. The gains of the signals are generated randomly but fixed from 

trial to trial and o\ = 1.0. This case is similar to the data model used by the deterministic 

(or conditional) ML method for DOA estimation in array signal processing [5]. We assume 

SNR = SNRi = SNR2 and the generated arbitrary gains in this example are otp = -0.5111+ 

0.3922J, <$ = 0.9157 - 0.4958J, a? = 0.3268 + 0.6921? and a{? = -1.8936 - 0.3220J. We 

use the extended WRELAX algorithm presented in Section 4.1 to estimate the delays and 

the MSEs are compared with the corresponding CRBs in Figure 11.3. It can be noted that 

the MSEs again approach the CRBs as SNR increases. 

Case C: Multiple Looks with Fixed Delays and Gains 
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Now we consider the problem of estimating fixed delays and gains of two signals from 

multiple data vectors collected by multiple looks in a colored Gaussian noise environment. 

In this example, the colored noise is modeled as a first-order autoregressive (AR) process 

with coefficient ai=-0.85. The delays and gains of the two signals are the same as those in 

Figure 11.2 and SNR = SNRx = SNR2 = 0 dB. The MSEs of WRELAX and TWRELAX 

are shown and compared with the CRBs in Figure 11.4 as a function of the normalized 

multiple look numbers log2(M/N). From Figure 11.4, it can be noted that the improvement 

of TWRELAX over WRELAX is significant, especially for small M as compared to N. For 

this example, when M = N/2, the MSEs of TWRELAX are very close to the CRBs, while 

M = AN is required before the MSEs of WRELAX approach the CRBs. 

Case D: Application to Ultra Wideband Ground Penetrating Radar 

The detection and classification of roadway subsurface anomalies are very important for 

the design and quality evaluation of highways. Ultra wideband ground penetrating radar 

is very suitable for this application because of its extremely large bandwidth (several GHz) 

and high range resolution (on the order of several centimeters). The returned echoes of 

the ultra wideband ground penetrating radar are superimposed signals reflected from the 

boundaries of different media (layers, voids, etc.), which can be described by (11.1). Unlike 

the data models used in the above simulations, the probing signal s(t) and the gains here 

are all real. Both the delays and gains are very useful for the detection and classification of 

roadway subsurface anomalies. The delays can be used to determine the layer thickness or 

anomaly location and the gains can be used to classify the type of media because the gains 

are related to the reflection coefficient at the boundary between two media with different 

dielectric constants. Once we get the estimates of the media dielectric constants, we can 

judge the type of the media. 

The current method of detecting and classifying roadway subsurface anomalies requires 

manual inspection of each radar trace by a qualified engineer or technician. This method is 

neither accurate nor practical. Although the range resolution of the ultra wideband ground 

penetrating radar is pretty high, it is still very difficult, if not impossible, to identify closely 

spaced echoes from different layers by visual examination.  Yet the closely spaced echoes 
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may be more important for the detection and classification of the anomalies. Due to the 

voluminous amount of data collected, manual inspection seems not feasible. However, using 

the proposed WRELAX algorithm, the detection and classification can be implemented 

automatically with high accuracy. In this paper, we will only consider the estimation of 

the delays and gains from the experimental data collected by an ultra wideband ground 

penetrating radar. The classification and many other practical issues (such as end reflection 

removal and sensor motion compensation) are beyond the scope of this paper. 

The sampled version of the signal waveform s(t) is depicted in Figure 11.5(a) as a function 

of the sample points, where the sampling interval is Ts=0.07 ns. No explicit expression is 

available for the transmitted signal s(t), which can only be measured by specially designed 

experiment. The discrete time Fourier transform (magnitude) of the signal in Figure 11.5(a) 

is shown in Figure 11.5(b), where /, = 1/T,=14.28 GHz. From Figure 11.5(b), it can be 

seen that the signal spectrum covers a wide range (from 0 to 2.5 GHz). Figure 11.5(c) shows 

the autocorrelation function (magnitude) of the signal s(t) in Figure 11.5(a), from which 

high sidelobes can be observed. These high sidelobes will greatly degrade the performance 

of the conventional matched filter approach, as can be seen from the matched filter output 

(shown in Figure 11.5(d)) of the sampled version of the observed signal y(t) (shown in Figure 

11.5(e)). We assume that there are L = 5 reflected signals coming from five layers. Using 

WRELAX we get the estimates of the delays (0.035 ns, 0.109 ns, 0.464 ns, 0.716 ns, 4.5 ns) 

and the gains (1.1644, -0.2883, 0.4171, 0.2711, -0.0460). The reconstructed signal returned by 

each layer is shown in Figures 11.5(f) through (j). The reconstructed superimposed signals 

obtained by using the estimates of WRELAX and those of the matched filter approach 

are compared with the observed signal in Figures 11.5(k) and (1), respectively. Note that 

WRELAX significantly outperforms the conventional matched filter approach. 

11.6    Conclusions 

In this chapter, we have proposed a weighted Fourier transform based WRELAX algo- 

rithm for the well-known time delay estimation problem. By avoiding the computationally 

demanding multidimensional search over the parameter space, WRELAX minimizes the NLS 
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criterion at a much lower implementation cost. It is more efficient and systematic than the 

somewhat similarly structured EM algorithm. The WRELAX algorithm is also successfully 

applied to the detection and classification of roadway subsurface anomalies and extended to 

two cases of multiple looks. 

Appendix: Derivation of CRBs 

We sketch below the derivation of the CRBs for the parameter estimates of the following 

data model 

Y(m) = fk*(m)+E(m),    m = l,2,...,M, (11.58) 

where 

ft = SA 

a(ri)   a(r2)   • a(rL) 

afa) exp[-;j^(-f)]   exp[-i^(-f + l)]   •••   exp [-i|^(f - 1)] 

and 

a<™> = 
(TO)        (TO) a (m) 

(Ü.59) 

(11.60) 

f. 
(11.61) 

(11.62) 

In (11.58) the additive noise vectors E<m), m = 1,2, • • •, M, are assumed to be zero-mean 

Gaussian random vectors with an unknown covariance matrix Q that are independent of each 

other. For convenience, we denote the three data models (11.4), (11.21), and (11.29) by Cases 

A, B, and C, respectively. Cases A and C can be viewed as special cases of the above data 

model, which corresponds to Case B. For Case A, we have M = 1, Y^ = Y, E^ = E, and 

For Case C, we have a^ = a*1* = a,    m = 1,2, • • •, M. Q;(l)   =   a 

Let 

and 

Cti     «2 OLL 

Y = (Y«)T (Y<2))T ••• (yW)! 

E (E^f (E^y (E^y 

(11.63) 

(11.64) 
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Then 

where 

and 

n = 

Y = Clä + E, 

\M ® f2,    for Cases A and C , 

1M ® ft,    for Case B, 

a, for Cases A and C, 

a l\T     („2\T («T ( a. (aM) M\T ,    for Case B, 

(11.65) 

(11.66) 

(11.67) 

with \M = [1 1  • • •  l]r> IM denoting the M x M identity matrix, and <g> denoting the 

Kronecker product [17]. Let Q = E{l£EH} be the covariance matrix of E. It follows that 

Q = IM ® Q. (11.68) 

The unknown variables in the likelihood function of Y are the unknown elements of Q, 

the real and imaginary parts of the gains (for complex valued gains) or simply the gains 

(for real valued gains), and the delays. The extended Slepian-Bangs' formula for the ijth 

element of the Fisher information matrix has the form [23, 24]: 

{FIM}^. = tr (Q-^Q-'Q;) + 2Re f(äffnE)_Q"1 (Öä)^ (11.69) 

where X- denotes the derivative of X with respect to the «th unknown parameter. Note that 

FIM is a block diagonal matrix since Q does not depend on the parameters in (fla), and 

(Öä) does not depend on the elements of Q. Hence the CRBs of the estimates of the delays 

and gains can be determined from the second term of the right side of (11.69). 

Next we derive the CRBs for the case of complex valued gains (which correspond to 

our simulation examples), and the CRBs for the case of real valued gains can be derived 

similarly. Let 

V ReT(ä)   ImT(ä)   TJ 

where Im(X) denotes the imaginary part of X and 

r = n   r2 TL 

(11.70) 

(11.71) 
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Let 

where 

with 

and 

with 

F = ft   jCl   DT$ 

DT 

\M <g> DT,    for Cases A and C , 

IM <8> DT,    for Case B. 

DT = S 

*, 
$ ($(1))T     ($(2))T     ...     ($(M)) 

da(ri)      da(T2) 
dr\ d.T2 

(M)\T 

da(rL) 
drL 

for Cases A and C , 

,   for Case B , 

(11.72) 

(11.73) 

(11.74) 

(11.75) 

3? = diag «i   a>2   ■■■   aL (11.76) 

and 

#(m) = diag (m)        tm) a M m = l,2,'-',M. (11.77) 

Then 
i-i 

CRBfa) = [2Re(Fi?Q~1F)]  x. (11.78) 

After some simple manipulations, we obtain the following more compact forms of the 

CRBs for Cases A, B, and C. 

CRB(i7) = 

Re(Ai) -Im(Ax) Re(A2) 

Im(Ai) Re(Ai) Im(A2) 

ReT(A2)   -ImT(A2)     Abf3 

-l 

(11.79) 

where 
( 2MflHQ-1Cl, for Cases A and C, 

\ 2 IM ® {nHQ-lfl),   for Case B, 
A1 = 

[ 2MOHQ-1DT* for Cases A and C, 

\ 2 [lM ® (OffQ-XDT)] *,   for Case B, 

(11.80) 

(11.81) 
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and 

f 2MRe ($HD?Q-l~DT$) , for Cases A and C. 

\2E^=iRe[(*(m))/yDfQ-1DT$
(m)],    for Case B. 
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Figure 11.5: Application of WRELAX to the experimental data acquired by an ul- 
tra-wideband ground penetrating radar to analyze roadway subsurface structure . The data 

is assumed to be a superimposition of five reflection signals coming from five layers, (a) 

Waveform of the known signal s(nTs). (b) Discrete Fourier spectrum (magnitude) of s(nTs). 

(c) Matched filter output of the known signal s{nTs). (d) Matched filter output of the ob- 

served signal y(nTs). (e) Waveform of the observed signal y{nTs). (f)-(j) Reconstructed 

signals reflected by Layers 1 through 5, respectively, by using WRELAX. (k) Comparison of 

observed signal (solid line) with reconstructed signal using WRELAX (dashed line). (1) Com- 

parison of the observed signal (solid line) with reconstructed signal using the conventional 

matched filter method (dashed line). 
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12.    Time Delay Estimation via Optimizing 

Highly Oscillatory Cost Functions 

12.1    Introduction 

Time delay estimation is a well known problem in the field of underwater acoustic signal 

processing. For the purpose of passive localization, two or more spatially separated sensors 

are often used to measure the time difference of arrivals of a radiating source whose transmit- 

ted signal waveform is usually unknown [1, 2]. Another problem is to estimate time delays 

and amplitudes from the superposition of multiple signals with known waveforms plus noise 

received at a single sensor (or a beamformed array of sensors). This problem occurs in many 

applications, including multipath separation [3, 4, 5, 6, 7] and target feature extraction and 

classification [8] and is considered herein. 

The most well-known time delay estimation technique is the matched filter approach. In 

the case of white Gaussian noise, it performs like the Maximum Likelihood (ML) method 

when the overlapping signals are well separated in the arrival times and is identical to the 

ML approach when there is only one signal present. The matched filter approach can be 

easily implemented using dedicated fast Fourier transform (FFT) chips or correlator chips. 

However, its resolution is limited to the reciprocal of the signal bandwidth. High resolution 

sinusoidal frequency estimation techniques such as MUSIC [9], Linear Prediction [10], and 

Maximum Likelihood (ML) approach are applied to the time delay estimation problems in 

[11, 12, 13], respectively. However, due to the spectral-division operation involved, these 

approaches should be applied to signals with flat (rectangular) or almost flat band-limited 

spectra. Further, they assume that the signals have complex-valued amplitudes. Hence they 

are usually not optimal when the signals have real-valued amplitudes. A computationally 

efficient approach based on the Expectation Maximization (EM) algorithm [14] is proposed in 

[15] that decouples the complicated multidimensional optimization problem into a sequence 

of multiple separate one-dimensional optimization problems. However, the EM method is 

very sensitive to initial conditions and no systematic initialization method is given in [15]. 
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For active sonar systems, the most commonly used signal waveforms are bandpass signals. 

For some propagation environments [3, 4, 16], the received signal can be modeled as the sum 

of amplitude scaled and time shifted replicas of the known transmitted bandpass signal. Since 

the transmitted signal is bandpass, the correlation function between the received signal and 

the known transmitted signal will oscillate near the carrier frequency of the transmitted 

signal. For this case, many existing time delay estimation algorithms perform poorly due 

to converging to local optimum points [3, 5, 6, 7]. One way that can be used to avoid this 

oscillation problem is to first model the received signal as the sum of time shifted replicas of 

a known transmitted signal with different complex-valued amplitudes to obtain good initial 

estimates of the unknown parameters [5, 6]. This idea is based on the observation that the 

nonlinear least-squares (NLS) cost function for signals with complex-valued amplitudes is 

much smoother than the one for signals with real-valued amplitudes. Hence good initial 

estimates can be obtained by assuming the signal amplitudes to be complex-valued and 

minimizing a much smoother cost function. However, due to the parsimony principle [17], 

the initial estimates are not as accurate as those obtained by using the original real-valued 

data model. Hence the initial estimates can be refined next by optimizing the original highly 

oscillatory true cost function corresponding to real-valued amplitudes. The algorithms we 

propose in this chapter are inspired by this idea first proposed in [5, 6]. 

In our previous paper [18], a weighted Fourier transform based relaxation method (re- 

ferred to as WRELAX) is presented for finding the global minimum of the frequency domain 

NLS cost function. The most striking feature of the WRELAX algorithm is that it decou- 

ples the multidimensional optimization problem into a series of one-dimensional optimization 

problems in a conceptually and computationally simple way. Compared with other existing 

algorithms, WRELAX is more systematic and efficient and has less limitations on the signal 

shapes. WRELAX can be used for signals with either real- or complex-valued amplitudes by 

minimizing slightly different cost functions. Unfortunately, just like many other algorithms, 

WRELAX is likely to converge to the local minimum instead of the global one when the 

NLS cost function is highly oscillatory. 

In this chapter, enlightened by the idea used in [5, 6], we propose two approaches based on 
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WRELAX to deal with the problem of optimizing highly oscillatory cost functions. First we 

assume that the signal amplitudes are complex-valued and use WRELAX to obtain the initial 

estimates, of the delays and the amplitudes of the superimposed signals by minimizing a much 

smoother NLS cost function. Then the initial estimates are refined with two approaches. One 

approach (referred to as Hybrid-WRELAX) uses the last step of the WRELAX algorithm 

to minimize the true NLS cost function corresponding to the real-valued signal amplitudes. 

The other approach (referred to as EXIP-WRELAX) uses the extended invariance principle 

(EXIP) [17, 19]. For Hybrid-WRELAX, the refinement step is iterative, while it is not for 

EXIP-WRELAX. Both of the algorithms are shown to approach the Cramer-Rao bound 

(CRB) as the signal-to-noise ratio (SNR) increases. 

The remainder of this chapter is organized as follows. In Section 12.2, we describe the data 

model and formulate the problem of interest. The Hybrid-WRELAX and EXIP-WRELAX 

algorithms are presented in Sections 12.3 and 12.4, respectively. Numerical examples are 

provided in Section 12.5 to illustrate the performances of the new algorithms. Section 12.6 

concludes the chapter. The CRB analysis is included in Appendix A. 

12.2    Problem Formulation 

The data model used in this chapter has the form [3, 4, 5, 6, 7, 16] 

y(t) = £ ats(t - n) + e(t)    0 < t < T, (12.1) 

where s(t), 0 < t < T0, represents the known real-valued transmitted signal (usually 

bandpass), y{t) denotes the real-valued received signal, which is composed of L replicas of 

s(t) with different real-valued amplitudes {aj}f=1 and real-valued delays {TI}\LX, and e{t) is 

the real-valued receiver noise, which is modeled as a zero-mean Gaussian random process. 

The above data model applies to some multipath propagation environments [3, 4, 16]. In 

practice, many problems can be described by this model. As pointed out in [4], this model 

applies to any problems where a known probe signal s(t) excites a linear time-invariant filter 

whose output is observed in the presence of noise and where the impulse response of the 
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filter is a finite sum of the scaled and time-shifted Dirac delta functions. 

The sampled received signal can be written as 

L 

1 
1=1 

y(nTs) = Y,als(nTs-Tl) + e(nTs),    n = 0,1, • • • ,N - 1, (12.2) 

where Ts is the sampling period and is equal to the reciprocal of the sampling frequency fs. 

Our problem of interest herein is to estimate {Q/,r,}f=1 from {y(nTs)}^~Q with known 

s(t), 0 < t < T0, or {s{nTs)}%~o when the signals are closely spaced. More specifically, we 

are interested in the high resolution time delay estimation problem in which the probe signal 

s{t) has highly oscillatory correlation function (such as bandpass signals). 

Although we could solve the estimation problem in the time-domain [3, 7, 15, 20], we 

prefer to do it in the frequency domain. This is because for the time domain processing 

methods, we could be restricted to using the discrete values of {n}^ if we only know the 

sampled version of s(t). For this case, if a more accurate delay estimate is required, then one 

has to resort to interpolation [3]. This inconvenience can be avoided by transforming the 

problem to the frequency domain, where {rjf=1 can take on a continuum of values. Another 

advantage comes from the simple implementation structure. As will be seen in the next two 

sections, our frequency domain algorithms are based on a sequence of Fourier transforms, 

which can be easily implemented by using the currently available dedicated high performance 

FFT chips, such as TMC2310 [21] and A41102 [22]. 

Let Y{k), S(k), and E(k), k = -N/2, -N/2 +1,..., N/2 - 1, denote the discrete Fourier 

transforms (DFT's) of y(nTs), s{nTs), and e{nTs), respectively. Provided that aliasing is 

negligible, then Y(k) can be written as: 

L 

E 
l=i 

Y(k) = 5(ife) £a,e»'w'* + E(k), (12.3) 

where 

■*~m (12'4) 

Note that the time delay estimation problem is similar to the sinusoidal parameter es- 

timation problem except that the exponential signals are weighted by the known signal 
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spectrum. If we divided both sides of (12.3) by 5(fc), the problem would become identical 

to the sinusoidal parameter estimation problem. Yet we should not do so for the following 

reasons: first, S(k) could be zero for some k: second, the noise E(k)/S(k) will no longer be 

a white noise even when E(k) is white; third, when E(k) is a white noise, the larger the 

S{k) at sample A;, the higher the SNR of the corresponding Y(k) and hence dividing Y(k) by 

S(k) will de-emphasize those Y(k)'s that have high SNRs. Because of this, many well-known 

sinusoidal parameter estimation algorithms, such as MUSIC [9], ESPRIT [23], and PRONY 

[24], are not directly applicable to our problem of interest. Further, since these algorithms 

are designed for complex-valued amplitudes, they do not take advantage of the real-valued 

amplitudes and hence cannot provide the best possible performance. 

12.3    The Hybrid-WRELAX Algorithm 

We consider below estimating the unknown parameters by minimizing the following NLS 

criterion: 

N/2-1 

c1({o,,w,}£sl)=   £ 
k=-N/2 

Y(k)-S{k)JTl<xle>Utk 

i=i 

(12.5) 

Since both the transmitted signal s(t) and the received signal y{t) are real-valued, their 

Fourier transforms are conjugate symmetric, i.e., Y(-k) = Y*(k) and S(-k) = S*(k), k = 

1,2, • • •, N/2-1, where (•)* denotes the complex conjugate, and Y(-N/2), Y{0), S(-N/2), 

and S(0) are real-valued. It can be readily shown that the above cost function is equivalent 

to 

c2({o^}f=1)= E w\k) 
k=-N/2 

Y{k)-S(k),£tale'utk 

i=i 

(12.6) 

where {W{k) = l}kL-N/2+i and W(-N/2) = W(0) = 1/V2. We assume that e{nTs) is a 

real-valued zero-mean white Gaussian random process with variance a2. Yet E(k) will not 

be a circularly symmetric complex-valued zero-mean white Gaussian random process since 

E(-k) = E*(k),     k = 1,2, • • •, N/2-1. (The circularly symmetric assumption on the noise 
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is widely used in the literature [25].) Nevertheless, it is shown in Appendix A that for this 

white noise case, the above NLS approach is the same as the ML method. 

The cost function C2{{ai,ul}f=l) in (12.6) with {aj}f=1 being real-valued is referred to as 

the true cost function. Minimizing C2({al,ul}f=1) with respect to the unknown parameters 

is a highly nonlinear optimization problem. For narrowband transmitted signals, the cost 

function is highly oscillatory and have numerous closely spaced local minima, which makes 

it very difficult to find the global minimum. By assuming the real-valued amplitudes {an}fLi 

to be complex-valued, a much smoother cost function can be obtained. This is equivalent 

to formulate the original time delay estimation problem in its complex analytic signal form. 

Since the analytic signal of the transmitted signal is lowpass, its autocorrelation function is 

no longer oscillatory. This is the conventional complex demodulation process and is widely 

used in practice. Although it is much easier to find the global minimum of the cost function 

corresponding to complex-valued amplitudes, the so-obtained estimates can be much less 

accurate than those obtained by minimizing the true cost function. The two cost functions 

share the same global minimum only when there is no noise. However, as suggested in [5, 6], 

we can minimize the cost function associated with complex-valued amplitudes to obtain the 

initial conditions needed to minimize the true cost function. Below, we present a relaxation 

based global minimizer of the NLS criterion based on this idea. The algorithm is referred 

to as the Hybrid-WRELAX algorithm. It simply requires a sequence of weighted Fourier 

transforms. 

Before we present our approach, let us consider the following preparations. Let 

W   =   diagj W(-N/2),   W(-N/2 + l),   •••,   W(-l),   W(0) } 

=   **{*•   1    ->    !•    *}' (12-7) 

W 
T 

Y{-N/2)   Y(-N/2 + l)   •••   y(0) (12.8) 

W diagl S(-N/2),   S(-N/2 + l),   •••.   5(0)}, (I2-9) 

267 



and 

a(wj) eM(-N/2)     eM(-N/2+l)     ...     j_ (12.10) 

where (-)T denotes the transpose. Denote 

L 

Y, = Y-   £   äipSato)] 

where {ai,£>i}i=ii# are assumed to be given. Let 

b(u>i) = Sa(w/),    Z = 1,2, ••-,!. 

(12.11) 

(12.12) 

Then (12.6) becomes 

C3Ku;() =|| Y-o^) ||2, (12.13) 

where || • || denotes the Euclidean norm.   Minimizing C3(ahüJi) with respect to the real- 

valued on yields the estimate &i of o^ 

on 
Re [bg(m)Y/ 

bH (u)i)b(oji) 

_   H. [a*M(S'Y,)] 
— II « 112 * V      ■      / 

II ° HF 

where (-)H denotes the conjugate transpose, Re(Z) represents the real part of Z, and || • ||F 

denotes the Frobenius norm [26].   (More specifically, || S ||F= ^/E°=-JV/2 lw(n)5(n)l20 

Then the estimate a); of w/ is obtained as follows: 

Re [bg(a>,)Y,], 
Ul arg mm 

bff(w,)b(w,) 

=   argmaxRe2[ag(^)(S*Y)l. 

^(w«) 

(12.15) 

where we have used the fact that b*(wj)b(wi) = £°=-tf/2 |Wr(")S(n)|2 and hence is indepen- 

dent of oji. Hence cjt is obtained as the location of the dominant peak of Re2 jag(^)(S*Y)J, 

which can be efficiently computed by using FFT with the weighted data vector S*Y* padded 
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with zeros. An alternative scheme to zero-padding FFT is to find an approximate peak lo- 

cation first by using FFT without much zero-padding and then perform a fine search nearby 

the approximate peak location by, for example, the fmin function in MATLAB, which uses 

the Golden section search algorithm. With the estimate of wj at hand, at is easily computed 

from the corresponding complex height by using cDj to replace w, in (12.14). 

Similarly, minimizing Cs(ahoJi) with respect to ujt and the complex-valued ah respec- 

tively, yields the estimates a)/ of ui and &i of an, 

2 
ui — arg max aH(w,)(S'Y,)   , (12.16) 

and 
a*(u/,)(S*Y,) 

on 
S||2F 

(12.17) 

where ui can also be found via FFT with the weighted data vector. 

With the above simple preparations, we now present the Hybrid-WRELAX algorithm. 

Step 1: Obtain the initial conditions for Step 2 by assuming that {ajf=1 are complex-valued 

and using the WRELAX algorithm as follows: 

Substep (1): Assume L = 1. Obtain {u>h d/},=i from Y by using (12.16) and (12.17). 

Substep (2): Assume L = 2. Compute Y2 with (12.11) by using {u^on}^ obtained 

in Substep (1). Obtain {u>h dj}j=2 from Y2- Next, compute Yi by using {uu aj}J=2 

and then redetermine {a>i,äü}j=i from Yx. 

Iterate the update of {w2, a2} and {u)U &i} until "practical convergence" is achieved 

(to be discussed later on). 

Substep (3): Assume L = 3. Compute Y3 by using {WJ,&J}?=1 obtained in Substep 

(2).   Obtain {a>j,äj}i=3 from Y3.   Next, compute Yi by using {uhai}f=2 and 

redetermine {ü)j,aj}/=i from Yi.   Then compute Y2 by using {uh dj}j=il3 and 

redetermine {oJi,&i}i=2 from Y2. 

Iterate the update of {u3, &3},{wi, &i}, and {OJ2, a2} until "practical convergence". 
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Remaining Substeps: Continue similarly until L is equal to the desired or estimated 

number of signals. 

Step 2: Refine the estimates obtained in Step 1 with the last step of the WRELAX algo- 

rithm (i.e., the last substep of Step 1 above) by using Equations (12.14) and (12.15) 

derived for the real-valued {ct/}f=i and using {a)/}f=1 and the real parts of {&/}f=1 ob- 

tained in Step 1 as initial conditions. Iteratively update {cühäi}, I = 1,2, ••-,£, 

until "practical convergence". 

The "practical convergence" in the iterations of the above method may be determined 

by checking the relative change of the cost function C2{{£ju6ii}i=i) in (I2-6) between two 

consecutive iterations. The algorithm is bound to converge to at least a local minimum point 

[27]. The convergence speed depends on the time delay spacing of the signals. If the spacing 

between any two signals is not too much smaller than the reciprocal of the signal bandwidth, 

the algorithm converges in a few steps. As the spacing of the signals becomes closer, the 

convergence speed becomes slower. 

Note that WRELAX can be used directly for signals with real-valued amplitudes. For 

this case, the approach would consist of the substeps of Step 1 above except that (12.14) 

and (12.15) will be used instead of (12.16) and (12.17), respectively. We will use a numerical 

example in Section 5 to show the problem encountered by the direct use of WRELAX when 

the cost function is highly oscillatory. 

Once we have obtained the estimates {wj}^, the estimates {n}f=l of {rjf=1 can be 

readily calculated by using (12.4). 

12.4    The EXIP-WRELAX Algorithm 

The Invariance Principle (IP) of ML estimators is well known in the estimation theory 

[28]. The invariance principle gives a simple answer to the relationship between the mini- 

mizers of a given cost function parameterized in two different ways in some special cases. 

By appropriately reparameterizing the original cost function and enlarging the supporting 

domain of the parameter space, less accurate estimates can be obtained from this simple data 
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model. These estimates may be refined to asymptotically achieve the performance available 

using the original data model. This is the basic idea behind the Extended Invariance Princi- 

ple (EXIP) proposed in [17, 19] for the purpose of achieving some computational advantages. 

In this section, we present an EXIP based algorithm, referred to as the EXIP-WRELAX al- 

gorithm, that avoids dealing with the highly oscillatory true cost function entirely. 

By using (12.8) and (12.12), the cost function (12.6) with {a;}f=1 being real-valued can 

be written in the following vector form 

2 

where 

with 

Cr,(r)) 

V 

Y-X>b(u;;) 

aT  uT 

(12.18) 

(12.19) 

(12.20) 

wi   W2   •••   Wi      ■ (12.21) 

By replacing the real-valued amplitudes {oti}f=l with the complex-valued amplitudes {äjf=1 

(notations introduced for the sake of clarity) in (12.18), we obtain the following cost function: 

a = 

(J3 = 

a.\   «2 a-L 

iT 

Cfjiv) = Y-£ätb(a;,) 
i=i 

where 

V ReT(ä)   ImT(ä)   wT 
iT 

with Im(Z) denotes the imaginary part of Z, and 

öc =     äi    ä2    ••■    äi, 

Denote 

and 

T) = arg min Cqiv), 

^ = arg min C«(»)). 
77        ' 

(12.22) 

(12.23) 

(12.24) 

(12.25) 

(12.26) 
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Let 

/fa) = FT?, (12.27) 

where 

F = 

I 0 

0 0 

0 I 

(12.28) 

with I and 0 denote the L x L identity matrix and the L x L matrix with zero elements, 

respectively. Using the EXIP principle [19, 17], we can obtain a new estimate r\ from f\ by 

solving the following weighted least squares problem 

where 

^ = argmin[»7-/fa)]   WEXIP [rj - /fa)] , 

'&[Cf,W 
WEXIP = E z.Xz.T dffdf] 

(12.29) 

(12.30) 
T7=7) 

It has been shown in [19, 17] that fj is asymptotically (for large N or high SNR) statistically 

equivalent to f]. The weighting matrix WEXIp is simply the Fisher Information Matrix 

(possibly scaled by a constant) for the complex-valued {äjf=1 with 77 replaced by its estimate 

T) (see Appendix B for more details). It can be easily shown that 

h = (FTWEXIpF)_1 (FrWEXIP) f,. (12.31) 

The EXIP-WRELAX algorithm is composed of two steps. The first step is the same as 

Step 1 of the Hybrid-WRELAX algorithm and the second step is to refine the initial con- 

ditions obtained in Step 1 by using (12.31). Compared to the Hybrid-WRELAX algorithm, 

the second step of the EXIP-WRELAX algorithm is non-iterative and avoids dealing with 

the highly oscillatory true NLS cost function entirely. Our numerical examples show that at 

low SNR, the former tends to outperform the latter. 
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12.5    Simulation Results and Discussions 

In this section, we present several numerical examples illustrating the performances of 

the proposed algorithms. The performances of the new algorithms are compared with the 

CRB, which gives the minimum attainable variances for any unbiased estimators. 

In the numerical examples below, we use a windowed chirp signal, 

s(t) = w(t)cos 
T   2 

2irf0t + ß(t-?f) 0<t<T0, (12.32) 

where f0 denotes the carrier frequency, ß represents the chirp rate, and 

' 0.5 - 0.5cos{irt/Tw), 0<t<Tw, 

w(t) = < 1, Tw<t<T0-Tw, (12.33) 

>0.5-0.5cos[n{t-To)/Tw],   T0-Tw<t<T0, 

with Tw = To/10. 

In the following simulations, we use iV = 256, ß = TT X 105, the signal bandwidth 

Bs = ßTo/ir, and the sampling frequency /, = 8BS. T0 is chosen in such a way that 

T0 = (N/2-l)Ts. In this case, it can be shown that T0 = ^j(N%l)* = 12.6 ms, T = 25.3 ms, 

Ts = 99.209 fjs, Bs = 1.26 KHz, fs = 10.08 KHz, and the resolution limit of the conventional 

matched filter method is generally considered to be around re = 1/Ba = 0.79368 ms. 

In all of the examples below, we have used e = 0.001 (the relative change in the cost 

function) to test the practical convergence of the WRELAX algorithm. The one-dimensional 

search is performed in two steps, with a coarse search using FFT followed by a fine search 

using the fmin function of MATLAB. Since the cost function for real-valued amplitudes is 

more oscillatory than the one for complex-valued amplitudes, we use more zero paddings 

with FFT for the former case. For the" former case, the data length after zero padding is 4JV, 

while for the latter case, it is N. The sampled noise {e{nTs)} is assumed to be a real-valued 

zero-mean white Gaussian random process with variance a2. The SNR for each signal is 

defined as 101og10(af/2cr2). The MSE is obtained through 100 independent Monte-Carlo 

trials. 

To see the oscillatory nature of the cost function we are dealing with, consider, for 
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simplicity, the case where there is only one direct path with delay rx = 0 and no noise is 

present. The normalized cost functions used to obtained Cbi for real-valued «i (solid line, 

corresponding to (12.15) and complex-valued ax (dashed line, corresponding to (12.16) are 

compared with each other in Figure 1, where the horizontal axis denotes the normalized time 

delay r/T and the carrier frequency of the transmitted signal is /0 = 2BS. From Figure 1, it 

can be seen that the cost function obtained by assuming the real-valued ax to be complex- 

valued is approximately the envelope of the true cost function [3, 5, 6]. The former is very 

smooth and does not change with /0, while the latter is highly oscillatory and oscillates more 

abruptly as /0 increases. Maximizing the latter can yield much more accurate parameter 

estimates than maximizing the former due to the sharper dominant peak of the latter (see 

the following example). 

The carrier frequency has a significant impact on the achievable estimation accuracy, as 

can be seen from Figure 2. Figure 2 compares the CRBs for the first signal when there 

are L = 2 signals with ax = 1, a2 = 1, n = T0/8, and r2 = T0/8 + 0.5re, and different 

carrier frequencies /0 = TBS. (The CRB curves for the other signal are similar.) It appears 

that the CRBs for both the delays and amplitudes are usually sensitive to /0, especially 

for the delay estimates, and the higher the carrier frequency, the lower their CRBs. This 

result can be intuitively explained with Figure 1. As the carrier frequency becomes larger, 

the mainlobe of the true cost function becomes narrower, and thus a better accuracy can 

be obtained. However, it generally requires more sophisticated and computationally more 

expensive implementation algorithms to achieve the higher accuracy potential provided by 

a larger carrier frequency. 

To illustrate the problem of the direct application of WRELAX to the case of real-valued 

{c*(}f=1, consider the example where the signals are the same as used in Figure 2 except that 

/o is fixed to 2BS. Waveforms of the transmitted signal and the noise-free received signal 

are compared in Figures 3(a) and (b), respectively. The output of the matched filter is 

shown in Figure 3(c). From Figure 3(c), it is obvious that the matched filter method cannot 

resolve the two signals. We compare the convergence properties of WRELAX for assuming 

{aj}j=i being real-valued ("o") and complex-valued ("*") in the absence of noise in Figure 
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4, where the horizontal axis denotes the iteration number and the vertical axis denotes the 

NLS cost function in (12.6). It can be seen that even for the noise free case, WRELAX gets 

trapped to some local minimum very quickly for assuming {a,}f=1 being real-valued, while 

converges to the global minimum for assuming {a/}f=1 being complex-valued even though 

{ai}^ are in fact real-valued. This example demonstrates the importance of Step 1 of the 

Hybrid-WRELAX algorithm. 

Finally, we add noise to the above example and compare the performances of the two new 

algorithms. The MSEs of the WRELAX ("+") for assuming {a,}f=1 being complex-valued, 

Hybrid-WRELAX ("o"), and EXIP-WRELAX ("x") are compared with the CRBs obtained 

by assuming {at}[=l being complex-valued (dashed line) and real-valued (solid line) in Figure 

5. Note that both Hybrid-WRELAX and EXIP-WRELAX achieve the corresponding CRB. 

Note also that the threshold effect is obvious in Figure 5, where the MSEs deviate away from 

the CRBs at low SNR. Although the WRELAX for assuming {a,}f=1 being complex-valued 

also attains its corresponding CRB (dashed line) at high SNR, this wrong CRB can be 

larger than the true CRB by approximately 30 dB. (Note that the former CRB is expected 

to be worse than the latter CRB due to the parsimony principle [17].) In this example, 

Hybrid-WRELAX outperforms EXIP-WRELAX at low SNR. 

12.6    Conclusions 

In this chapter, we have proposed two relaxation based algorithms (Hybrid-WRELAX 

and EXIP-WRELAX) to deal with the difficult problem of resolving closely spaced mul- 

tipaths by minimizing the highly oscillatory nonlinear least squares (NLS) cost functions. 

The basic idea of the two algorithms is to first find reliable initial estimates of the unknown 

parameters by minimizing a much less oscillatory cost function and then refine the initial 

estimates by either minimizing the true cost function or applying the extended invariance 

principle. Both approaches rely on the WRELAX algorithm, which is a relaxation-based 

global minimizer of the NLS criterion requiring only a sequence of weighted Fourier trans- 

forms. Both of the two proposed algorithms are shown to approach the Cramer-Rao bound 

as the signal-to-noise ratio increases. At low SNR, Hybrid-WRELAX performs better than 
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EXIP-WRELAX and hence is preferred.   At high SNR, the latter is preferred due to its 

simplicity and similar performance as the former. 

Appendix A: Derivation of CRBs 

We sketch below the derivation of the CRBs for the real-valued parameters of the data 

model in (12.3). Due to the conjugate symmetry property of DFT, {Y(k)}^S^2 can 

be expressed in terms of {Y(k)}°k=_N/2 with {Y(k)}ll_N/2+1 being complex-valued and 

{Y(-N/2), Y(0)} being real-valued. Let 

Y(-N/2 + l)   Y(-N/2 + 2)   •••   Y(-l) 

Yr   = Y(-N/2)   Y(0) 

Er E(-N/2 + l)   E{-N/2 + 2)   •••   E{-1) 

T 

Er  = E(-N/2)   E(0) 

= diag[ S(-N/2 + l),   S(-N/2 + 2),   •••,   5(-l) } 

and 

Sr = diag| S(-N/2),   5(0) }• 

From (12.3) and (12.20), we have 

Yc = Qcoc + Ec, 

where a is defined in (12.20), 

Yr = nra + Er, 

''c — 3c"cj 

with 

Ac = ac(ri)   ac(r2)   •••   ac(rL) 

(12.34) 

(12.35) 

(12.36) 

(12.37) 

(12.38) 

(12.39) 

(12.40) 

(12.41) 

(12.42) 

(12.43) 
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ac(r() exp [_7-22E2.(_£ + l)' 
[    J NTsy      2   ^ L> exp ■> iVTs V      2   ^ ^. ^P [-^(-1)] 

and 

with 

and 

x\.f   — 

ar(Tj) 

d Uy         iJy£\.j*j 

ar(ri)   ar(r2)    ••■   &r(TL) 

(12.44) 

(12.45) 

(12.46) 

(12.47) 

Assume that the additive noise {e{nTs)}%=o is a real-valued zero-mean white Gaussian ran- 

dom process with variance a2. Denote 

iT 

e 

where 

r = 

ocT   rT   a2 

Ti   r2   • • •   rL 

(12.48) 

(12.49) 

Since DFT is a unitary operator, the likelihood function for Yc and Yr has the form 

P(Yc,Yr|0)   =   i^2^eXp{-^(Yc-fica)^(Yc-Oca)- 

^(Yr-nra)T(Yr-fira)}. (12.50) 

Using the Y and the S defined in (12.8) and (12.9), respectively, we can rewrite (12.50) in 

the following compact form 

P(Y« Yr|ö) = ^-exp {-1 (Y - SAa)* (Y - SA«)} . (12.51) 

where 

with 

i(n)   a(r2)    •••   a(rL) 

a(r,) = exph^(-f)]    exp[-jf£(-f + l)] 
iT 

(12.52) 

(12.53) 
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\H Hence the ML estimates of a and r are obtained by minimizing (Y - SAa)    (Y - SAa), 

which is equivalent to the NLS cost function in (12.6). 

The CRB matrix CRB(0) corresponding to the unknown parameter vector 0 has the 

form [25]: 

CRB~1(e) = E 
01np(Yc, Yr|0) 

86 

dlnp(Yc,Yr\G) 

de 
(12.54) 

It can be shown that the matrix CRB(0) is block diagonal with its last row and column being 

zero except for the last diagonal element. Let the signal parameter vector 77 be denoted as 

t] = T        T a1    T1 

Then it is readily shown that the tj'th element for CRB 1{r)) has the form: 

[CRB-1 fa)]y = ^{[(SAa/J* [(SAa);]} , 

where (Z) ■ denotes 9Z/% with ^ being the tth element of rj. 

(12.55) 

(12.56) 

Appendix B: Derivation of Wj^IP 

For complex-valued ä, where ä is defined in (12.24), let 

V ReT(ä)   ImT(a)   r1 (12.57) 

Then similar to the derivations in Appendix A, the ijth. element of WEXjp has the form: 

[wEXIp]„ = 2Re{[(SAä);]H[(SAä);.]} 
T/=?7 

(12.58) 

where (Z)- denotes dZ/dfji with fji being the tth element of f), and 7] is the estimate of ff 

obtained by using WRELAX when assuming complex-valued signal amplitudes. 
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Figure 12.1:  Comparison of the cost function obtained by assuming the real-valued signal 

amplitudes to be complex-valued (dashed line) and the true cost function (solid line). 

281 



CO 
IT 
O 

-120 

-130 

5 10 

SNR (dB) 

(a) 

-10 -5 5 10 15 

SNR (dB) 

20 

(b) 

Figure 12.2:  Effects of the carrier frequency (/0 

CRBs for (a) n and (b) ax. 

rBs) of the transmitted signal on the 

282 



■i 

1.5 . 

0.5 JlUUiillUiUjl!iln ü I           1    11  111' 
■0.5 'llll™ 
•1.5 

1             1 i_ 1- 
100 150 200 

Sample Points 

(a) 

Sample Points 

(b) 

(c) 

Figure 12.3: (a) Transmitted signal waveform s(nTs). (b) Noise-free observed signal wave- 

form y(nTs). (c) Matched filter output of y(nTs) (solid line), where the two vertical dashed 

lines indicate the true normalized arrival times of the two signals. 
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13.    Super Resolution Time Delay Estimation via MODE-WRELAX 

13.1    Introduction 

Time delay estimation is a well-known problem that arises frequently in radar, sonar, ra- 

dio navigation, geophysical/seismic exploration, wireless communication, and medical imag- 

ing. It falls mainly into two categories: one is the Time of Arrival (TOA) estimation based 

on one sensor, such as radar and active sonar; the other one is the Time Difference of Arrival 

(TDOA) estimation based on multiple sensors, such as passive sonar, radio positioning and 

navigation systems. Practical signal models and configurations of sensors depend on specific 

applications. For example, the transmitted signal waveform is known for the former case 

while it is usually not for the latter situation. In this chapter, we only consider the former 

time delay estimation problem based on one sensor with known transmitted signal shapes. 

Matched filter approach is the simplest one for this problem. By correlating the received 

signal with the known transmitted signal (complex conjugated) and searching for the peaks 

of the cross correlation outputs, we can obtain the time delay and amplitude estimates from 

the peak positions and heights correspondingly. The major drawback of the matched filter 

approach lies in the fact that it cannot resolve two signals with a time spacing less than the 

reciprocal of the signal bandwidth. How to resolve very closely spaced signals is the focus 

of this chapter and this issue has received a significant amount of attentions in the past 

two decades. Efficient solution to this problem has many potential applications including 

feature extraction via high range resolution radar and synthetic aperture radar, detection and 

classification of roadway subsurface anomalies by using ultra wideband ground penetrating 

radar, and multipath separation in sonar and wireless communications. 

Many super resolution time delay estimation techniques have been devised recently. In 

the time domain, the received signal can be modeled as the sum of multiple scaled and 

delayed replicas of the transmitted signal plus noise. In the Fourier frequency domain, this 

data model becomes the sum of multiple weighted complex exponentials plus noise. The 

frequency domain data model is similar to those used for the sinusoidal parameter and 
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angle estimation problems except that the complex exponentials are weighted by the known 

signal spectrum. Based on this observation, many existing sinusoidal frequency and angle 

estimation algorithms, such as MUSIC [1], linear prediction [2], and maximum likelihood, 

are suggested to solve this time delay estimation problem [3, 4, 5, 6]. However, they are best 

suited for complex-valued signals with special shapes (such as flat band-limited spectrum). A 

computationally efficient approach based on the Expectation Maximization (EM) algorithm 

[7] is proposed in [8] that decouples a complicated multidimensional optimization problem 

into a sequence of multiple separate one-dimensional optimization problems. However, the 

EM method is very sensitive to initial conditions and no systematic initialization method is 

given in [8]. The separation of multipaths from real-valued bandpass underwater acoustic 

signals with highly oscillating correlation functions is a very challenging issue and is addressed 

in [9, 10, 11]. The algorithms proposed in [9, 10, 11] are all based on a nonlinear least squares 

(NLS) fitting criterion and differ with each other in the way how the NLS cost function is 

optimized. Except for the EM algorithm presented in [8], all other aforementioned algorithms 

estimate the time delays and the amplitudes separately, i.e., the delays are estimated first 

and then they are used with a linear least-squares approach to estimate the amplitudes. 

When the time delay estimates are very close to each other, the amplitude estimates can be 

very poor due to the ill-conditioning problem. 

In our previous paper [12], a Weighted Fourier transform and RELAXation based method 

(referred to as WRELAX) is presented to minimize a frequency domain NLS cost function. 

The most striking feature of the WRELAX algorithm is that it decouples the multidimen- 

sional optimization problem into a series of one-dimensional optimization problems in a 

conceptually and computationally simple way. Compared with other existing algorithms, 

WRELAX is more systematic and efficient and has less limitations on the signal shapes. 

High estimation accuracy can be attained for both the delays and the amplitudes since they 

are estimated jointly and no matrix inversion is involved. WRELAX can be applied to either 

complex- or real-valued signals by minimizing slightly different cost functions. WRELAX 

was extended in [13] to deal with the real-valued signals with highly oscillatory correla- 

tion functions. The resolution of WRELAX are much higher than that of the conventional 
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matched filter approach. However, when the signals are very closely spaced in arrival times, 

the convergence speed of WRELAX decreases rapidly. 

In this chapter, we study how MODE [14, 15] can be used with our efficient WRELAX 

algorithm for super resolution time delay estimation. The new algorithm is referred to 

as MODE-WRELAX. Although MODE can provide very poor amplitude estimates and 

WRELAX has the slow convergence problem, MODE-WRELAX outperforms both MODE 

and WRELAX. MODE-WRELAX can be used for both complex- and real-valued signals 

(including those with highly oscillatory correlation functions). 

The remainder of this chapter is organized as follows. Section 13.2 establishes the data 

model and states the problem of interest. The MODE-WRELAX algorithm is presented in 

Section 13.3. Efficient implementation of the algorithm is given in Section 13.4. Numerical 

examples are provided in Section 13.5 to illustrate the performance of MODE-WRELAX. 

Finally, Section 13.6 contains our conclusions. 

13.2    Data Model and Problem Statement 

For conventional radar and active sonar, the most commonly used probing signal has the 

following form: ■':• 

s{t)=m(t)cos[2nf0t + 9(t)], (13.1) 

where m(t) and 6(t) denote the amplitude and phase modulations, respectively, and /0 

represents the carrier frequency. Usually, the above real-valued bandpass signal is converted 

into inphase (I) and quadrature (Q) components. The classical approach for this conversion 

is the analog quadrature demodulation by utilizing sine and cosine mixers and low-pass 

filters. However, this approach is highly sensitive to analog component mismatch between 

the I and Q channels. The state-of-the-art technology for such a conversion is the digital 

quadrature sampling [16], whose performance is mainly limited by the A/D quantization. 

The I and Q components thus obtained can be used to form the following complex-valued 

analytic signal 

s(t) = m(t)e>m. (13.2) 
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The received signal from a scatterer can be described as 

f(t) = Am(t - r)cos[27r/0(i - r) + 6(t - r) + </>], (13.3) 

where .4. 6, and r denote the amplitude, phase, and time delay determined by the scatterer 

and the propagation medium. After quadrature demodulation, the received signal can be 

expressed as a scaled and delayed version of the complex analytic signal s(t) 

r{t) = as(t - r), (13.4) 

where a represents the complex-valued amplitude and has the form 

a = Ae^e-j^for. (13.5) 

For certain underwater acoustic signal propagation environment [9, 10, 11, 17], the re- 

ceived signal f(t) itself due to a scatterer is just a scaled and delayed version of the probing 

signal s(t), which corresponds to the case where no phase is induced by the multipath chan- 

nel. No quadrature demodulation is needed in this case and (13.4) still holds with r(t) = f(t), 

s(t) = s{t), and a = A. This corresponds to the real-valued signal model, which is also valid 

in other applications, such as the ultra wideband ground penetrating radar where the probing 

signal is carrier-free and not sinusoidal. 

The time delay estimation data model considered in this chapter has the following general 

form: 

I y(t) = £ ais(t - TI) + e(t)    0 < t < T, (13.6) 

where s(t), 0 < t < T0, represents an arbitrary known transmitted signal , y(t) denotes the 

received signal, which is composed of L replicas of s(t) with different amplitudes {ai}^ 

and delays {r,}f=1, and e(t) is the additive noise, which is modeled as a zero-mean white 

Gaussian random process. Without loss of generality, we assume that s{t), y(t), e(t), and 

{ajf=i are either all complex-valued or all real-valued. 
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The sampled received signal can be written as 

y{nTs) = jr,als{nTs-n) + e{nTa),    n = 0,1, • • • ,N - 1, (13.7) 
i=\ 

where Ts is the sampling period and is equal to the reciprocal of the sampling frequency fs. 

Our problem of interest herein is to estimate {a,,^}^ from {y(nTs)}"zQ
l with known 

s(£), 0 < t < T0, or {s{nTs)}%-o when the signals are very closely spaced. 

Although we could solve the estimation problem in the time domain [3, 8, 9,11], we prefer 

to do it in the frequency domain. This is because for the time domain processing methods, 

we could be restricted to using the discrete values of {n}^ if we only know the sampled 

version of s(t). For this case, if a more accurate delay estimate is required, then one has to 

resort to interpolation [9]. This inconvinence can be avoided by transforming the problem 

into the frequency domain, where {n}^ can take on a continuum of values. Let Y(k), S{k), 

and E(k), k = -N/2, -AT/2 +1,..., N/2 -1, denote the discrete Fourier transforms (DFT's) 

of y{nTs), s(nTs), and e(nTs), respectively. Provided that aliasing is negligible, then Y{k) 

can be written as: 

L 

£ 
i=i 

where 

2-KTi 

Y(k) = Simone?"* + E{k), (13.8) 

Ul NTS 

(13.9) 

Note that the time delay estimation problem is similar to the sinusoidal parameter es- 

timation problem except that the exponential signals are weighted by the known signal 

spectrum. If we divided both sides of (13.8) by S(k), the problem would become identical 

to the sinusoidal parameter estimation problem. Yet we should not do so for the following 

reasons: first, S(k) could be zero for some k; second, the noise E(k)/S(k) will no longer 

be a white noise even when E(k) is white; third, when E(k) is a white noise, the larger 

the S(k) at sample k, the higher the SNR of the corresponding Y(k) and hence dividing 

Y(k) by S{k) will de-emphasize those Y(k)'s that have high SNRs. Because of this, many 

well-known sinusoidal parameter estimation algorithms, such as MUSIC [1], ESPRIT [18], 

290 



PRONY [19], MODE [14, 15], are not best suited to our problem of interest. Further, since 

these algorithms are designed for complex-valued amplitudes, they cannot provide the best 

possible performance for real-valued signals. 

13.3    The MODE-WRELAX Algorithm 

In this section, we will first present the MODE-WRELAX algorithm for complex-valued 

signals, and then extend it to real-valued signals (especially those with highly oscillatory 

correlation functions) and also multiple look cases. 

13.3.1    MODE-WRELAX for Complex-Valued Signals 

Assume that (-)T denote the transpose and let 

Y = Y(-N/2)   Y{-N/2 + l)   •■•   Y(N/2-l) 

= diag{ S(-N/2),   S{-N/2 + l),   •■-,   S{N/2-l)}, 

(13.10) 

(13.11) 

E = 
iT 

E{-N/2)   E(-N/2 + l)   •••   E{N/2-l) (13.12) 

a = a,\   a2   •••   OIL (13.13) 

and 

A = i(wi)   a(o;2)   •••   SL(UL) 

IT 

(13.14) 

with 

a(wj) = eM(-N/2)     eM(-N/2+l)     . . .     eM(N/2-l) 

Then the data model (13.8) can be written in the following vector form: 

Y = SAa + E. 

(13.15) 

(13.16) 
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When S is an identity matrix, then the above time delay estimation issue becomes a 

sinusoidal parameter estimation problem and MODE is an asymptotically statistically effi- 

cient estimator of {wjf=1 for complex-valued signals [14, 15]. The MODE algorithm [14, 15] 

can be easily extended to the data model in (13.16) where S is an arbitrary diagonal ma- 

trix as follows. The MODE estimates {&J}J=I of {wjf=1 can be obtained by minimizing the 

following cost function 

C1({o;;}/i1)=YffPiY, (13.17) 

where (-)H denotes the conjugate transpose and 

with I denoting the identity matrix and 

(13.18) 

A = SA. (13.19) 

To avoid the search over the parameter space, Ci({u;j}f=1) can also be reparametrized in terms 

of another parameter vector b = 

the following polynomial: 

b0   h where {bi}fL0 are the coefficients of 

L L 

b(z) £ £ btz
L-1 ± bo U(z - e*"0; b0 ? 0. (13.20) 

i=0 1=1 

Since the polynomial b(z) in (13.20) has all of its zeros on the unit circle, its coefficients {bt} 

satisfy the conjugate symmetry constraint [14]: 

h = b*L_h    I = 0,!,■•■,L, (13.21) 

where (•)* denotes the complex conjugate. Let 

QNX(N-L) (13.22) 

bL 
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Assume that the diagonal elements of S are nonzero (see Remark 1 for more discussions). 

Let 

B = S-"B. (13.23) 

It can be readily verified that BHA = 0 and hence BHk = 0. Then P^ = B (BffB) B
H 

and minimizing Ci({wj}f=1) in (13.17) is equivalent to minimizing 

C2({bi}to) = YHB (B"B)-1 B*Y. (13.24) 

Note that BHB in (13.24) can be replaced by a consistent estimate without affecting the 

asymptotically statistical efficiency of the minimizer of (13.24). Hence b can be obtained 

computationally efficiently as follows: 

b = arg nun [Y^S^B (BJS^S-'BO)"1 B'S^Y] , (13.25) 

where B0 is the initial estimate of B obtained by replacing b with b(°> in (13.22). The initial 

value b<°> is obtained by setting B^B in (13.24) to I: 

b<°> = arg min [Y^S^BB^S^Y] . (13.26) 

To avoid the trivial solution b = 0, we should impose || b ||= 1 (where || • || denotes the 

Euclidean norm) in (13.25) and (13.26) or some other similar constraints. (For detailed 

implementation steps, see Section 4.) The estimates {^}f=1 of {^}f=1 are the phases of 

the roots of the polynomial £f=o bizL~l. Once {w,}f=1 are obtained, the amplitudes a are 

estimated by applying the linear least-squares approach to 

Y « SÄa, (13-27) 

where A is formed by replacing {wj}f=1 with {^}f=1 in (13.14). 

Remark 1: MODE cannot be implemented efficiently to avoid the search over the parameter 

space when S(k) = 0 for some k. The most commonly used complex analytic signal s(t) 

is low-pass. For this case, we can select a contiguous segment of Y satisfying |5(A;)| > 

0, Ki < k < K2, and preferrably with \S{k)\ above a certain threshold to avoid numerical 

problems. We can then apply MODE to the segment {Y(k)}jf*Kl to estimate {w,}f=1. 
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Remark 2: The amplitude estimates given above can be very poor when the SNR is not 

sufficiently high. This is because some of the MODE estimates {uijf^i can be so closely 

spaced that A in (13.27) is seriously ill-conditioned. We use a simple spacing adjustment 

scheme to avoid this problem. After obtaining the MODE estimates {u)i}f=1 of {ui}f=1, 

we first sort them in the ascending order and then check the spacing between two adjacent 

estimates. If the distance between any two estimates, say CJX and u2 (&i < w2), is smaller than 

a predefined threshold, say Aut, we adjust the estimates by replacing ux with Wi - 0.5Aut 

and ü>2 with G)2 + 0.5Awt. The amplitudes are then estimated using the adjusted estimates 

of {wj}j=i. This spacing adjustment step is ad hoc but can be used to provide good initial 

delay and amplitude estimates to replace the first L - 1 steps of WRELAX. 

The MODE estimates {£*}f=1 of {^}f=1 and {ajf=1 of {ai}{Llt which may not be optimal, 

especially for real-valued signals, can be refined by using the last step of the WRELAX 

algorithm. 

WRELAX is a relaxation-based minimizer of the following nonlinear least-squares (NLS) 

criterion: 

L 

I 
1=1 

aa^unyti) =11Y - E«<SaM n2 • (13-28) 

When e(nTs) is a zero-mean white Gaussian random process, E(k) is also white since DFT 

is a unitary transformation. For this white noise case, the NLS approach is the same as 

the maximum likelihood (ML) method. When e(nTs) is not white, NLS approach can still 

provide estimates with good statistical accuracy [20]. 

Minimizing C3{{auui}f=l) with respect to the unknown parameters is a highly nonlin- 

ear optimization problem and it is very difficult to find the global minimum. WRELAX 

decouples the multi-dimensional optimization problem into a sequence of one-dimensional 

optimization problems in a conceptually and computationally simple way. WRELAX esti- 

mates the delays and amplitudes jointly and requires only a sequence of weighted Fourier 

transforms. When the signals are not spaced very closely, WRELAX usually converges in 

a few steps. However, when the signals are very closely spaced, the convergence speed of 

WRELAX is very slow. Yet by using the above MODE algorithm to obtain the initial con- 
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ditions and then using the last step of WRELAX to refine them, super resolution time delay 

estimation can be achieved with a fast convergence speed. 

Before we present the MODE-WRELAX algorithm, let us consider the following prepa- 

rations. Let 

Y,=Y-   £   äi[Sa(öi)l. (13-29) 

where {&i,Wi}i=iti# are assumed to be given . Then (13.28) becomes 

C,(ahui) =|| Yt - a,Sa(w«) ||2 . (13.30) 

Minimizing C^{ah wj) with respect to wj and the complex-valued an yields 

oji = arg max aff(w,)(S*Yi)   , (13.31) 

and 
-       ag(m)(S*Y,) 
al  — II  Q  112 

II ö IIF 
(13.32) 

Ull=&l 

where || • ||F denotes the Frobenius norm [21]. 

With the above preparations, we now present the steps of the MODE-WRELAX algo- 

rithm for complex-valued signals. 

Step (1): Select a contiguous segment of data vector Y (for MODE use only) so that 

|5(ifc)| > 0, K\ < k < K2. Apply MODE to the segment to obtain {^}f=1. Adjust {wj}f=1 

so that the minimum spacing of {^}f=1 is at least Aw,. Obtain the estimates {ajf=1 of 

{a/}f=i by using (13.27). 

Step (2): Refine the estimates obtained in Step (1) by using the last step of WRELAX. 

That is, compute Yx by using {ui,&i}fL2 obtained in Step (1). Obtain {a>j,0|}j=i from Yi 

by using (13.31) and (13.32). Next, compute Y2 by using the updated {wj,a/}j=il3,...,L and 

determine {CJU &i}i=2 from Y2. Then compute Y3 by using the updated {wj, &I}I=I,2,A,...J, and 

determine {coi,&i}i=3 from Y3. Continue this procedure and similarly determine {WJ,&I}J=I, 

from Yi. Repeat the above process until "practical convergence" (to be discussed later on). 

The "practical convergence" in the iterations of the above WRELAX algorithm may be 

determined by checking the relative change of the cost function C3({£z,aj}f=1) in (13.28) 
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between two consecutive iterations. The algorithm is bound to converge to at least a local 

minimum point under mild conditions [22]. 

Once {üi}iLi are determined, the delay estimates {fjf=1 of {r,}f=1 can be computed by 

using (13.9) with {w/}f=1 replaced by {o>*}f=1- 

Similarly, we can use MODE as an initialization method for the EM time delay estimation 

algorithm [7], which is referred to as MODE-EM. However, we have found through numer- 

ical simulations that the convergence speed of MODE-EM is slower than that of MODE- 

WRELAX. 

13.3.2    MODE-WRELAX for Real-Valued Signals 

Real-valued signals are often bandpass signals that occur, for example, in underwater 

sonar and ultra wideband ground penetrating radar applications. Bandpass signals have 

highly oscillatory correlation functions, which makes the super resolution time delay estima- 

tion problem more difficult. The larger the center frequency of the pass band, the sharper 

the oscillation of the correlation function. 

Consider the data model expressed by (13.8). When the signals s{t), y(t), and e(t) are all 

real-valued, their Fourier transforms are conjugate symmetric, i.e., Y(-k) = Y*(k), S(-k) = 

S*(k), and E(-k) = E*(k), k = 1,2, • - -,N/2 - 1, and Y(-N/2), Y(0), S(-N/2), 5(0), 

E(-N/2), and  E(0) are real-valued. Define 

W =   diagj W{-N/2),   W(-N/2 + l),   •••,   W(-l),   W(0)) 

=   diagj^,   1,   ....   1,   £}, (13-33) 

Y = W Y(-N/2)   Y(-N/2 + l)   ■■■   y(0) (13.34) 

= W  diagj S(-N/2),   S(-N/2 + l),   •••,   5(0)}, (13.35) 

E = W E(-N/2)   E{-N/2 + l)   •••   ^(0) 
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and 

A = 

where 

&(un) = 

Then it follows that 

a(cji)   a(o>2)    • • •   a(wz,) 

eM(-N/2)     gj«i(-Af/2+l)     ...     i 
iT 

(13.37) 

(13.38) 

Y = SAa + E. (13.39) 

Since the amplitudes {ajf=1 are real-valued and due to the conjugate symmetry of Y(k), 

S(k), and E{k), it can be proven that minimizing C3({ah w,}f=1) is equivalent to minimizing 

L 

I 
Z=l 

CiitoutiU) =|| Y - 5>Sä(w,) ||2 ■ (13.40) 

For the case of white Gaussian noise, the above NLS approach is the same as the ML method. 

For bandpass real-valued signals, C5({a/,^}f=i) is a highly oscillatory cost function and is 

very difficult to find its global minimum. Although MODE is derived for complex-valued 

signals, we can apply it to Y in (13.39) by assuming the real-valued amplitudes {a,}f=1 to 

be complex-valued. These initial estimates are then refined by the WRELAX algorithm. 

Since the attraction domain of the cost function Cs{{ai,tJi}k=i) is extremely small, a very 

good initial condition is required to achieve the global convergence of any minimizer of 

Csda^wi}^). The MODE estimates are first refined by WRELAX by assuming {ai}^ to 

be complex-valued since the attraction domain of C5({o!/, wj}^) becomes much larger when 

assuming the real-valued {o:j}f=1 to be complex-valued [10]. The so-obtained estimates are 

refined again by WRELAX by using the fact that {a,}f=1 are real-valued. The cost functions 

of WRELAX are changed slightly when the signals are real-valued. Let 

Y,=Y-   JT   ansäte)]. (13-41) 

where {&i,u>i}i=i&i are assumed to be given . Then (13.40) becomes 

C6(ai,w,)H|Y-a,Sä(a;,)||2. (13-42) 
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Minimizing Ce(ai,u)i) with respect to ut and real-valued ai yields 

wt = arg max Re2 [äH(o;,)(S*Y,)j , (13.43) 
Wl 

and r , 
-       Re[äg(^)(S*Yt) 
ai ~ II S ||2F 

(13.44) 

With the above preparations, we now present the steps of the MODE-WRELAX algo- 

rithm for real-valued signals. 

Step (1): Select a contiguous segment of data vector Y so that \S(k)\ > 0, Kx < 

k < K2. By assuming the real-valued {ai}fLx to be complex-valued, obtain the estimates 

{£/}f=i and {ajf=1 in the same way as Step (1) of the MODE-WRELAX algorithm for 

complex-valued signals. 

Step (2): Refine the estimates obtained in Step (1) above by using the last step of 

WRELAX by assuming complex-valued signals. Take the real parts of the so-obtained 

amplitude estimates as the amplitude estimates {oj*}f=i of {ou}fLv 

Step (3): Refine the estimates obtained in Step (2) above by using the last step of 

WRELAX and the fact that the signals are real-valued. 

13.3.3    Extensions to Multiple Looks 

The above algorithms are designed for the single look case. However, they are readily 

extended to the multiple look case where multiple independent measurements are available, 

which occurs, for example, when a radar emits a sequence of pulses for target detection. For 

the multiple look data model, it is assumed that the delays are fixed while the unknown 

amplitudes vary from scan to scan. Under this assumption, the extensions of both MODE 

and WRELAX are possible and the detailed derivations are omitted here due to the limited 

space. 
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13.4    Efficient Implementation of MODE-WRELAX 

Since MODE-WRELAX is mainly composed of two blocks, MODE and WRELAX, below 

we consider the efficient implementation of each block. 

13.4.1    MODE 

As stated before, it is necessary to constrain b to avoid the trivial solution b = 0 

when minimizing C2{{bi}JL0) in (13.24). Furthermore, the conjugate symmetric constraint 

in (13.21) can also be easily included to improve the performance. With conjugate symmetry, 

the number of unknowns is about halved. This does not guarantee that the zeros are on 

the unit circle. It is a necessary but not sufficient condition for the zeros to be on the unit 

circle. This constraint can be eliminated by reparameterizing C2{{k}f=0) in (13.24) with a 

real-valued vector ß G 7£(L+1)xl which satisfies 

b = r/3, 

where T G C(L+1)x(Z/+1) denotes a matrix made from 0,1, ±j. Let 

(13.45) 

V - S_1Y, (13.46) 

and 

V = 

V(-N/2 + L)      V(-N/2 + L-1) 

V(-N/2 + L+l)       V{-N/2 + L) 

V(N/2 - 1) V(N/2 - 2) 

Then the optimization problem in (13.25) becomes 

V(-N/2) 

V(-N/2 + 1) 

V(N/2 -L-l) 

with 

3 = arg min ßHRe 
ß 

-l ~ 
THVH (B^S^S-^BO)   vr ß, 

ß{0) = argmin/3*Re (r*V*Vr) ß. 
ß 

(13.47) 

(13.48) 

(13.49) 

299 



To avoid the trivial minimizer ß = 0, we impose || ß ||= 1. 

To implement (13.48) and (13.49) efficiently, we note that (S_HB0) is a banded but not 

a Toeplitz matrix. Also, (ß^S^S^Bo) is a banded Hermitian matrix with band width L, 

which is usually far less than the matrix dimension N - L. 

The steps of minimizing (13.48) and the amount of computations (complex operations) 

required in each step are summarized as follows: 

Step 1: Compute C = (s-ffB0)
HS-HB0. 

It is easy to verify that the (t, j)th element of matrix C is given by: 

Cy 

ij> 

for \i-j\ > L, 

for \i - j\ < L ; 

for \i — j\ < L and i < j. 

0, 

Ef^^fo1,   iov\i-j\<L^ndi>j, 

a 
(13.50) 

This step requires O (NL2) flops. 

Step 2: Compute the Cholesky decomposition GGH of C. 

Since C is a positive-definite banded Hermitian matrix with the band width L, the 

Cholesky factor G is a banded lower triangular matrix with band width L, which is calculated 

by the following iterative procedure [23]: 

G = C; 

for    j = l:N-L 

for   I = max{l, j - L} : j - 1,   gjtj = gjtj - \gj,i?\   end 

9j,j — \/9j,j'i 

for    i = j + 1 : min{j + L,N - L} (13.51) 

for   I = max{l, j - L} : j - 1,   gitj = gid - gi,ig]p   end; 

9i,j = 9i,j/9j,j] 

end 

end 

This step requires O (NL2) flops. 

Step 3: Compute Z = G^V. 
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Since G is a banded lower triangular matrix with band width L, the Zth column of Z 

can be obtained by back substitution from matrix G and the Zth column of V, which is 

computed by the following procedure: 

zi = Zth column of matrix V; 

for    j = l:N-L 

ZiU) = *iU)/9iJ\ (13-52) 

for   t = j + 1 :min{j + L,N-L},   zt(i) = z^i) - gitjzt(j)\   end 

end 

This step requires O (NL2) flops. 

Step 4: Compute * = ZHZ. 

Since Z is an (N - L) x (L + 1) Hermitian matrix, this step requires O (NL2) flops. 

Step 5: Compute ft = Re (TH
VT). 

This step requires O (L3) flops. 

Step 6: Compute ß = argming ßTQß subject to || ß ||= 1. 

Note that ß is the eigenvector of fi corresponding to its smallest eigenvalue. This step 

requires O (L3) flops. 

In practice, L, the number of signals, is usually much smaller than N, the number of 

data points, hence Steps 1 through 4 constitute the major computational load of MODE, 

which is around O (NL2) flops. 

13.4.2    WRELAX 

Compared with MODE, WRELAX is computationally much simpler. From (13.31) and 

(13.43), we note that WRELAX involves a sequence of one-dimensional search over the 

parameter space. This search can be implemented using the weighted FFT and dedicated 

high speed FFT chips, such as TMC2310 [24], A41102 [25], and TM-66 swiFFT [26]. With 

brute force search, sufficient zero paddings are needed to guarantee the high accuracy of 

the estimates. An alternative scheme to zero-padding FFT is to find an approximate peak 

location first by using FFT without much zero-padding and then perform a fine search nearby 
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the approximate peak location by, for example, the fmin function in MATLAB, which uses 

the Golden section search algorithm. 

Golden section search is an efficient one-dimensional iterative optimization method ex- 

hibiting local convergence property [22]. Each iteration requires the evaluation of the the cost 

function once. After each iteration, the search interval is shortened by a factor of 0.618. To 

estimate the amount of computations required by WRELAX, let us assume that the iteration 

number needed by the Golden section search is Ng. Ng depends on the accuracy desired for 

the estimates of {U)L}\LV Provided that the desired accuracy for {CjL}f=l is Awmin, then the 

iteration number Ng needed by the Gloden section search is the minimum integer satisfying 

the following inequality 
9-7T 

^0.618^ < Aow, (13.53) 
N 

where N denotes the the number of data points after zero-padding used by the coarse-gridded 

FFT search and is power of 2. From (13.53), it follows that 

[NAUmin 
N9 = (13.54) logons y—^- 

where \X] rounds X to the nearest integer > X. The amount of computations required by 

WRELAX for each iteration is O [(iVlog2 N + 4NNg) L] flops. 

13.5    Numerical Examples 

In this section, we present several numerical examples illustrating the performance of 

MODE-WRELAX. In all of the examples below, we have used e = 0.001 to test the conver- 

gence of WRELAX. All data sequences are zero-padded to the nearest power of 2. MODE is 

applied to a data segment (see Remark 1 in Section 3.1) satisfying \S{k)\ > max{\S(k)\}/10. 

The spacing threshold value Awt (see Remark 2 in Section 3.1) is chosen as 0.15re, where 

re is the equivalent pulse width and is equal to the reciprocal of the signal bandwidth. (re 

is usually considered to be the resolution limit of the matched filter approach.) The one- 

dimensional search is performed in two steps, a coarse search using FFT followed by a fine 

search using the fmin function of MATLAB. The mean-squared error (MSE) is obtained 
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through 100 Monte-Carlo trials. For all of the examples below, the MODE amplitude esti- 

mates are obtained without the spacing adjustment. 

Case A: Application to Ultra Wideband Ground Penetrating Radar 

The detection and classification of roadway subsurface anomalies are very important for 

the design and quality evaluation of highways. Ultra wideband ground penetrating radar 

emits nonsinusoidal impulses with extremely large bandwidth (several GHz) and is very 

suitable for this application because of its high range resolution (on the order of several 

centimeters). The returned echoes of the ultra wideband ground penetrating radar are 

superimposed real-valued signals reflected from the boundaries of different media (layers, 

voids, etc.), which can be described by (13.6). Both the delays and gains are very useful for 

the detection and classification of roadway subsurface anomalies. The delays can be used 

to determine the layer thickness or anomaly location and the gains can be used to classify 

the type of media because the gains are related to the reflection coefficient at the boundary 

between two media with different dielectric constants. Once we get the estimates of the 

media dielectric constants, we can judge the type of the media. 

Although the range resolution of the ultra wideband ground penetrating radar is very 

high, it is still very difficult, if not impossible, to identify closely spaced echoes from different 

layers by visual examination or using the matched filter method. Yet the closely spaced 

echoes may be more important for the detection and classification of the anomalies. 

Ultra wideband signals have many unique features. The sampled version of such a signal 

s(t) is depicted in Figure 13.1(a) as a function of the sample points, where the sampling 

interval is Ts=0.07 ns. The discrete time Fourier transform (magnitude) of the signal in 

Figure 13.1(a) is shown in Figure 13.1(b), where /s = 1/TS=14.28 GHz. From Figure 

13.1(b), it can be seen that the signal spectrum covers a wide range (from 0 to 2.5 GHz). 

Figure 13.1(c) shows the autocorrelation function (magnitude) of the signal s(t) in Figure 

13.1(a), from which high sidelobes can be observed. These high sidelobes will greatly degrade 

the performance of the conventional matched filter approach. The observed signal y{t) is 

assumed to be composed of signals coming from three layers with delays n = 40TS = 2.835 ns, 

r2 = 70TS = 4.961 ns, and r3 = 72TS = 5.102 ns, and amplitudes ax = 1.0, a2 = 0.4, and 
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a3 = 0.3. Noise is also added to the observed signal and the noise variance is 324, as 

determined by the data collection system. The sampled waveform of y(t) is as shown in 

Figure 13.1(d). Note that since the signals coming from Layers 2 and 3 are so closely spaced, 

only two signals can be observed by visual examination. 

The performances of MODE (a, b, and c), WRELAX (d, e, and f), and MODE-WRELAX 

(g, h, and i) are compared in Figure 13.2. In this example, the data length N is 200. In 

Figure 13.2, the solid lines and the symbols "o" denote the true and estimated echoes of 

each layer, respectively. From Figure 13.2, we note that the echo due to Layer 1 is well 

estimated and the estimates are almost the same for all methods since this layer is well 

separated from the other two layers. However, the estimated echoes due to Layers 2 and 3 

differ greatly. MODE can resolve the two closely spaced signals but the estimates are biased, 

especially for the amplitude estimates. In some other trials, the MODE amplitude estimates 

are even poorer and are on the order of 1013. WRELAX cannot resolve the two closed spaced 

signals due to its slow convergence. MODE-WRELAX not only successfully resolves the two 

closely spaced signals but also provides very accurate estimates for both the delays and the 

amplitudes. (In this example, the number of iterations required by Steps (2) and (3) of the 

MODE-WRELAX algorithm for real-valued signals is 24 and 10, respectively.) 

Case B: Application to Multipath Underwater Acoustic Signals 

We now show the performance of MODE-WRELAX for bandpass real signals with highly 

oscillatory correlation functions, which may occur in underwater sonar applications. The per- 

formances of MODE, WRELAX, and MODE-WRELAX are compared with the Cramer-Rao 

bound (CRB), which gives the minimum attainable variances for any unbiased estimators. 

(Detailed derivations of the CRB can be found in [13].) 

In this example, we use a windowed chirp signal, 

Tv 21 

s(t) = w(t) cos 2irf0t + ß(t--f) 0 < t < T0, (13.55) 
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where /0 denotes the carrier frequency, ß represents the chirp rate, and 

'0.5-0.5cos(irt/Tw), 0<t<Tw, 

w(t) = \ 1, Tw<t<T0-Tw, (13.56) 

. 0.5 - 0.5cos[7r(t - T0)/Tw],   T0-Tw<t< T0, 

with Tw = TO/10. 

Other signal parameters are chosen as N = 256, ß = n x 105, the signal bandwidth 

Bs = ßT0/w, and the sampling frequency /, = SBS. T0 is chosen in such a way that 

T0 = (N/2-l)Ts. In this case, it can be shown that T0 = J{N%1)w = 12.6 ms, T = 25.3 ms, 

Ts = 99.209 /xs, Bs = 1.26 KHz, fs = 10.08 KHz, and the resolution limit of the conventional 

matched filter method is around rc = 1/BS = 0.79368 ms. The carrier frequency of the 

transmitted signal is /0 = 2BS. 

Since the cost function for real-valued amplitudes is more oscillatory than the one for 

complex-valued amplitudes, we use FFT with more zero paddings for WRELAX and MODE- 

WRELAX. For the former case, the data length after zero padding is AN, while for the latter 

case, it is Ar. The sampled noise {e(nTs)} is assumed to be a real-valued zero-mean white 

Gaussian random process with variance a2. The SNR for each signal is defined to be 

101og,0(°'g=>W|2/W). 

To see the oscillatory nature of the cost function we deal with, consider the case where 

there is only one direct path with delay rx = 0 and no noise is present. The cost functions 

used to obtain a»i for real-valued ax (solid line, corresponding to (13.43) and complex-valued 

«x (dashed line, corresponding to (13.31) are compared with each other in Figure 13.3, where 

the horizontal axis denotes the normalized time delay T/T. From Figure 13.3, it can be seen 

that the cost function for complex-valued ax is approximately the envelope of that of the 

real-valued ai [10]. The former is very smooth and does not change with /0, while the latter 

is highly oscillatory and oscillates more abruptly as /0 increases. Maximizing the latter 

can yield much more accurate parameter estimates than maximizing the former due to the 

sharper dominant peak of the latter. 

Now we consider an example where the echoes corresponds to L — 2 paths with «i = 

1,  a2 = 1.   n = To/8, and r2 = T0/8 + 0.2re.   The MSEs of MODE ("o"), WRELAX 
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("x"), and MODE-WRELAX ("*") are compared with the corresponding CRBs (solid line) 

in Figure 13.4. Note that due to the highly oscillatory cost functions and very closely spaced 

signals, WRELAX converges to some local minimum instead of the global one, which yields 

very poor estimates. Since the MODE amplitude estimates are obtained without spacing 

adjustment, they are so poor at low SNR that some of their MSEs are above the axis limit 

due to the inversion of ill-conditioned matrices corresponding to very closely spaced delay 

estimates. Although the MSEs of the MODE estimates are close to the CRBs corresponding 

to the complex-valued amplitudes when the SNR is high, the wrong CRBs (not shown to 

avoid too many lines in the figure) can be larger than the true CRBs, which correspond to the 

real-valued amplitudes, by approximately 30 dB. (Note that the former CRBs are expected 

to be worse than the latter CRBs due to the parsimony principle [27].) MODE-WRELAX 

significantly outperforms MODE and WRELAX and can approach the true CRBs. Note that 

for the real-valued signals that do not have highly oscillatory cost functions, for example, for 

the ground penetrating radar probing signal used in Case A (see Figure 13.1 (c)), Step (2) 

of the MODE-WRELAX approach given in Section 3.2 can be skipped. However, when the 

signals have highly oscillatory correlation functions, such as the one used in this example, 

Step (2) is needed to yield the best estimates since the initial estimates provided by MODE 

is not accurate enough to achieve the global convergence of the last step of WRELAX for 

such real-valued signals. For this example, the SNR threshold for MODE-WRELAX to 

approach the CRBs without Step (2) is about lOdB higher than that for MODE-WRELAX 

with Step (2). (Note that the average numbers of iterations required by Steps (2) and (3) 

of MODE-WRELAX for real-valued signals are 20 ~ 33 and 7 ~ 13, respectively, in this 

example.) 

Case C: Application to High Range Resolution Radar 

In the this example, we apply the time delay estimation technique to target feature extrac- 

tion with high range resolution radar (HRRR). HRRR can be used to form one-dimensional 

target range signatures (radar cross section (RCS) versus range) with high resolution, which 

can be used for automatic target recognition. To achieve the high range resolution, the radar 

must transmit signals with very large bandwidth. For this purpose, pulsed linear frequency 
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modulation (FM) chirp waveform is commonly used. However, the requirement for the lin- 

earity of the wideband frequency modulation is very stringent if FFT is used to obtain target 

range signatures [28]. We can relax this requirement by applying our super resolution time 

delay estimation technique to this problem. 

The transmitted windowed complex-valued signal has the form 

s(t) = w{t)e^-T^,    0<t<To, (13.57) 

where the window function w(t) is defined in (13.56) and the definitions of all other param- 

eters are the same as those used in the previous example. 

In this example, we use N = 128, ß = TTX 1012, the signal bandwidth Bs = ßT0/ir, and the 

sampling frequency /, = ABS. T0 is chosen in such a way that T0 = (AT/2 - 1)TS. In this case, 

it can be shown that T0 = yj^j^ = 3.9686 jxs, T = 8.0002 fjts, Ts = 0.062994 //s, Bs = 

3.9686 MHz, fs = 15.875 MHz, and the resolution limit of the conventional matched filter 

method is around re = 1/BS = 0.25198 /xs. For the sake of simplicity, we assume that 

the target is composed of two scatterers with ax = eJ,r/8, a2 = eJ7r/4, n = T0/128, and 

r2 = To/128 + 0.2re. Zero-mean complex white Gaussian random noise is added and the 

definition of SNR is the same as used in Case B. We use FFT with no zero-padding in 

WRELAX and MODE-WRELAX. 

The MSEs of MODE ("o"), WRELAX ("x"), and MODE-WRELAX ("*") are compared 

with the corresponding CRBs (solid line) in Figure 13.5. The performance of WRELAX is 

poor due to its slow convergence for very closely spaced signals. Both MODE and MODE- 

WRELAX can approach the CRBs when the SNR is high. However, MODE-WRELAX 

outperforms MODE significantly at low SNR. (Note that the average number of iterations 

required by Step (2) of MODE-WRELAX for complex-valued signals is 20 ~ 33 in this 

example.) 
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13.6    Conclusions 

We have studied time delay estimation of very closely spaced signals and presented a 

super resolution method (referred to as MODE-WRELAX). The popular direction estimation 

technique MODE is modified and used in combination with our efficient WRELAX algorithm 

for time delay estimation. MODE-WRELAX outperforms MODE in estimation accuracy and 

provides better resolution than WRELAX. MODE-WRELAX can be used with not only 

complex-valued signals but also real-valued signals, including those with highly oscillatory 

correlation functions. Numerical examples have shown that MODE-WRELAX can approach 

the corresponding CRBs as the SNR increases. 
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Figure 13.1: Signals used by an ultra-wideband ground penetrating radar, (a) Waveform of 

the known signal s(nTs). (b) Discrete Fourier spectrum (magnitude) of s(nTs). (c) Matched 

filter output of the known signal s(nTs). (d) Observed signal y(nTs) consisting of three 

reflections from three layers plus noise. 
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Figure 13.2: Comparison of the true (solid line) and the estimated ("o") echoes of each layer 

by using MODE (a, b, c), WRELAX (d, e, f) and MODE-WRELAX (g, h, i). 
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